首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   46篇
  国内免费   8篇
  2024年   2篇
  2023年   9篇
  2022年   18篇
  2021年   17篇
  2020年   22篇
  2019年   11篇
  2018年   21篇
  2017年   7篇
  2016年   14篇
  2015年   24篇
  2014年   32篇
  2013年   38篇
  2012年   22篇
  2011年   38篇
  2010年   26篇
  2009年   26篇
  2008年   21篇
  2007年   33篇
  2006年   20篇
  2005年   15篇
  2004年   26篇
  2003年   14篇
  2002年   6篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   6篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有548条查询结果,搜索用时 140 毫秒
71.
Impact on viability and adhesion of three protein fractions, separated by size, from the coelomic fluid of wounded Asterias rubens′, was tested on autologous coelomocytes. In addition antimicrobial property of the protein fractions was tested on the Gram-negative bacterium Vibrio parahaemolyticus. All fractions promoted viability and the larger proteins facilitated adhesion of the coelomocytes. The strongest antimicrobial effect was caused by the fraction with the smallest proteins.  相似文献   
72.
In the process of tissue injury and repair, epithelial cells rapidly migrate and form epithelial sheets. Vinexin is a cytoplasmic molecule of the integrin-containing cell adhesion complex localized at focal contacts in vitro. Here, we investigated the roles of vinexin in keratinocyte migration in vitro and wound healing in vivo. Vinexin knockdown using siRNA delayed migration of both HaCaT human keratinocytes and A431 epidermoid carcinoma cells in scratch assay but did not affect cell proliferation. Induction of cell migration by scratching the confluent monolayer culture of these cells activated both EGFR and ERK, and their inhibitors AG1478 and U0126 substantially suppressed scratch-induced keratinocyte migration. Vinexin knockdown in these cells inhibited the scratch-induced activation of EGFR, but not that of ERK, suggesting that vinexin promotes cell migration via activation of EGFR. We further generated vinexin (−/−) mice and isolated their keratinocytes. They similarly showed slow migration in scratch assay. Furthermore, vinexin (−/−) mice exhibited a delay in cutaneous wound healing in both the back skin and tail without affecting the proliferation of keratinocytes. Together, these results strongly suggest a crucial role of vinexin in keratinocyte migration in vitro and cutaneous wound healing in vivo.  相似文献   
73.
Wound healing/regeneration mouse models are few, and studies performed have mainly utilized crosses between MRL/MPJ (a good healer) and SJL/J (a poor healer) or MRL/lpr (a good healer) and C57BL/6J (a poor healer). Wound healing is a complex trait with many genes involved in the expression of the phenotype. Based on data from previous studies that common and additional quantitative trait loci (QTL) were identified using different crosses of inbred strains of mice for various complex traits, we hypothesized that a new cross would identify common and additional QTL, unique modes of inheritance, and interacting loci, which are responsible for variation in susceptibility to fast wound healing. In this study, we crossed DBA/1J (DBA, a good healer) and 129/SvJ (129, a poor healer) and performed a genome-wide scan using 492 (DBA×129) F2 mice and 98 markers to identify QTL that regulate wound healing/regeneration. Four QTL on chromosomes 1, 4, 12, and 18 were identified which contributed toward wound healing in F2 mice and accounted for 17.1% of the phenotypic variation in ear punch healing. Surprisingly, locus interactions contributed to 55.7% of the phenotype variation in ear punch healing. In conclusion, we have identified novel QTL and shown that minor interacting loci contribute significantly to wound healing in DBA×129 mice cross. The authors Masinde, Li, and Nguyen contributed equally to this article.  相似文献   
74.
BACKGROUND AND AIMS: Information on the influence of wounding on lignin synthesis and distribution in differentiating xylem tissue is still scarce. The present paper provides information on cell modifications with regard to wall ultrastructure and lignin distribution on cellular and subcellular levels in poplar after wounding. METHODS: Xylem of Populus spp. close to a wound was collected and processed for light microscopy, transmission electron microscopy and cellular UV microspectrophotometry. Cell wall modification with respect to lignin distribution was examined at different stages of wound tissue development. Scanning UV microspectrophotometry and point measurements were used to determine the lignin distribution. KEY RESULTS: Xylem fibres within a transition zone between differentiated xylem laid down prior to wounding and the tissues formed after wounding developed distinctively thickened secondary cell walls. Those modified walls and cell corners showed, on average, a higher lignin content and an inhomogeneous lignin distribution within the individual wall layers. CONCLUSIONS: The work presented shows that wounding of the xylem may induce a modified wall architecture and lignin distribution in tissues differentiating at the time of wounding. An increasing lignin content and distinctively thickened walls can contribute to improved resistance as part of the compartmentalization process.  相似文献   
75.
Fibroblast-3D collagen matrix culture provides a model system to analyze cell physiology under conditions that more closely resemble tissue than conventional 2D cell culture. Previous work has focused primarily on remodeling and contraction of collagen matrices by fibroblasts, and there has been little research on migration of cell populations within the matrix. Here, we introduce a nested collagen matrix model to analyze migration of fibroblasts in 3D collagen matrices. Nested collagen matrices were prepared by embedding contracted cell-containing matrices (also called dermal equivalents) inside cell-free matrices; migration occurred from the former to the latter. Control experiments with human dermal fragments in place of dermal equivalents confirmed the reliability of the model. Human fibroblast migration in nested collagen matrices occurred after a lag phase of 8-16 h, and cells migrating out of the inner matrices were bipolar with leading dendritic extensions. Migration was myosin II, Rho kinase and metalloproteinase-dependent but did not require plasma fibronectin. Platelet-derived growth factor but not lysophosphatidic acid or serum stimulated cell migration, although all three of these physiological agonists promote matrix remodeling and contraction. The nested collagen matrix model is a relatively easy, rapid and quantitative method to measure migration of cell populations. Our studies using this model demonstrate important differences between regulation of fibroblast migration and remodeling in collagen matrices.  相似文献   
76.
77.
Janus kinase 3 (Jak3) is a nonreceptor tyrosine kinase expressed in both hematopoietic and nonhematopoietic cells. Although mutations that abrogate Jak3 functions cause different immunological disorders, its constitutive activation leads to various types of cancer. Previously, we demonstrated that Jak3 interacted with actin-binding protein villin, thereby facilitating cytoskeletal remodeling and wound repair. In this study, we characterize the structural determinants that regulate the interactions between Jak3 and cytoskeletal proteins of the villin/gelsolin family. Functional reconstitution of kinase activity by recombinant full-length (wt) Jak3 using Jak3-wt or villin/gelsolin-wt as substrate showed that Jak3 autophosphorylation was the rate-limiting step during interactions between Jak3 and cytoskeletal proteins. Determination of kinetic parameters showed that phosphorylated (P) Jak3-wt binds to P-villin-wt with a dissociation constant (Kd) of 23 nm and a Hill''s coefficient of 3.7. Pairwise binding between Jak3 mutants and P-villin-wt showed that the FERM domain of Jak3 was sufficient for binding to P-villin-wt with a Kd of 40.0 nm. However, the SH2 domain of Jak3 prevented P-villin-wt from binding to the FERM domain of nonphosphorylated protein. We demonstrate that the intramolecular interaction between the FERM and SH2 domains of nonphosphorylated Jak3 prevented Jak3 from binding to villin and that tyrosine autophosphorylation of Jak3 at the SH2 domain decreased these intramolecular interactions and facilitated binding of the FERM domain to villin. Thus we demonstrate the molecular mechanism of interactions between Jak3 and cytoskeletal proteins where tyrosine phosphorylation of the SH2 domain acted as an intramolecular switch for the interactions between Jak3 and cytoskeletal proteins.  相似文献   
78.
Chromatophores show significant changes during healing of skin wounds in Labeo rohita (Common Name - Rohu). Wound area can be divided into regions I, II and III. After infliction of wound, skin colour becomes significantly dark by 2 h that is gradually restored by 2 d. In regions II and III at 5 min, epidermal melanophores appear with beaded dendrites. In these regions at 2 h and in region I at 6 h, epidermal melanophores appear small, rounded or irregular shaped having dendritic processes with aggregated melanosomes. Subsequently, melanophores appear having elongated dendrites with dispersed or aggregated melanosomes. At 24 h, clusters of pigmented bodies appear in regions I and II. These bodies increase up to 2 d, and then diminish gradually and disappear by 8 d. Changes in dermal melanophores in region II at 5 min indicate the onset of degeneration. Degenerating melanophores increase up to 12 h, then gradually decline, and disappear by 4 d. Simultaneously, stellate melanophore reappear, gradually increase and appear like control by 8 d. Dermal melanophores in region III at different intervals appear stellate. In region I stellate dermal melanophores appear at 4 d. Stellate melanophores in all regions show different distribution of dispersed or aggregated melanosomes. With the appearance of dermal melanophores, highly refractive, crystalline structures, possibly the refractive platelets of the iridophores, are visualized around them. At subsequent intervals, these are frequently observed. This study provides interesting insights in injury induced changes in chromatophores in fish. The findings could be considered useful in perception of intriguing features in the development of pigment research in future.  相似文献   
79.
One major obstacle in current diabetic wound research is a lack of an ischemic wound model that can be safely used in diabetic animals. Drugs that work well in non-ischemic wounds may not work in human diabetic wounds because vasculopathy is one major factor that hinders healing of these wounds. We published an article in 2007 describing a rabbit ear ischemic wound model created by a minimally invasive surgical technique. Since then, we have further simplified the procedure for easier operation. On one ear, three small skin incisions were made on the vascular pedicles, 1-2 cm from the ear base. The central artery was ligated and cut along with the nerve. The whole cranial bundle was cut and ligated, leaving only the caudal branch intact. A circumferential subcutaneous tunnel was made through the incisions, to cut subcutaneous tissues, muscles, nerves, and small vessels. The other ear was used as a non-ischemic control. Four wounds were made on the ventral side of each ear. This technique produces 4 ischemic wounds and 4 non-ischemic wounds in one animal for paired comparisons. After surgery, the ischemic ear was cool and cyanotic, and showed reduced movement and a lack of pulse in the ear artery. Skin temperature of the ischemic ear was 1-10 °C lower than that on the normal ear and this difference was maintained for more than one month. Ear tissue high-energy phosphate contents were lower in the ischemic ear than the control ear. Wound healing times were longer in the ischemic ear than in the non-ischemic ear when the same treatment was used. The technique has now been used on more than 80 rabbits in which 23 were diabetic (diabetes time ranging from 2 weeks to 2 years). No single rabbit has developed any surgical complications such as bleeding, infection, or rupture in the skin incisions. The model has many advantages, such as little skin disruption, longer ischemic time, and higher success rate, when compared to many other models. It can be safely used in animals with reduced resistance, and can also be modified to meet different testing requirements.  相似文献   
80.
In multicellular organisms, cell behavior is dictated by interactions with the extracellular matrix. Consequences of matrix-engagement range from regulation of cell migration and proliferation, to secretion and even differentiation. The signals underlying each of these complex processes arise from the molecular interactions of extracellular matrix receptors on the surface of the cell. Integrins are the prototypic receptors and provide a mechanical link between extracellular matrix and the cytoskeleton, as well as initiating some of the adhesion-dependent signaling cascades. However, it is becoming increasingly apparent that additional transmembrane receptors function alongside the integrins to regulate both the integrin itself and signals downstream. The most elegant of these examples is the transmembrane proteoglycan, syndecan-4, which cooperates with α(5)β(1)-integrin during adhesion to fibronectin. In vivo models demonstrate the importance of syndecan-4 signaling, as syndecan-4-knockout mice exhibit healing retardation due to inefficient fibroblast migration. In wild-type animals, migration of fibroblasts toward a wound is triggered by the appearance of fibronectin that leaks from damaged capillaries and is deposited by macrophages in injured tissue. Therefore there is great interest in discovering strategies that enhance fibronectin-dependent signaling and could accelerate repair processes. The integrin-mediated and syndecan-4-mediated components of fibronectin-dependent signaling can be separated by stimulating cells with recombinant fibronectin fragments. Although integrin engagement is essential for cell adhesion, certain fibronectin-dependent signals are regulated by syndecan-4. Syndecan-4 activates the Rac1 protrusive signal, causes integrin redistribution, triggers recruitment of cytoskeletal molecules, such as vinculin, to focal adhesions, and thereby induces directional migration. We have looked for alternative strategies for activating such signals and found that low-intensity pulsed ultrasound (LIPUS) can mimic the effects of syndecan-4 engagement. In this protocol we describe the method by which 30 mW/cm(2), 1.5 MHz ultrasound, pulsed at 1 kHz (Fig. 1) can be applied to fibroblasts in culture (Fig. 2) to induce Rac1 activation and focal adhesion formation. Ultrasound stimulation is applied for a maximum of 20 minutes, as this combination of parameters has been found to be most efficacious for acceleration of clinical fracture repair. The method uses recombinant fibronectin fragments to engage α(5)β(1)-integrin, without engagement of syndecan-4, and requires inhibition of protein synthesis by cycloheximide to block deposition of additional matrix by the fibroblasts. The positive effect of ultrasound on repair mechanisms is well documented, and by understanding the molecular effect of ultrasound in culture we should be able to refine the therapeutic technique to improve clinical outcomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号