首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   7篇
  国内免费   8篇
  2023年   3篇
  2022年   3篇
  2021年   7篇
  2020年   3篇
  2019年   15篇
  2018年   7篇
  2017年   5篇
  2016年   6篇
  2015年   5篇
  2014年   7篇
  2013年   25篇
  2012年   8篇
  2011年   7篇
  2010年   8篇
  2009年   3篇
  2008年   9篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
  1980年   2篇
  1977年   1篇
排序方式: 共有170条查询结果,搜索用时 421 毫秒
61.
62.
Plantlet regeneration in Cucumis metuliferus from several explant sources, including cotyledons, leaves, hypocotyls and petioles, was evaluated on Murashige and Skoog's medium containing various combinations of auxin (IAA, NAA, 2,4-d) and cytokinin (BA, kinetin, zeatin), Callus development was obtained within 4 to 5 weeks on all growth regulator combinations which were tested at concentrations ranging from 1.0 M to 4.0 M of each. The response was similar when the tissues were incubated under light or in continuous darkness. Differentiation of callus to form adventitious buds or shoot primordia occurred only with petiole explants on medium containing NAA/BA or 2,4-d/BA at 2.0/1.0 M; none of these calluses, however, differentiated further to form shoots. When the differentiated calluses derived from petiole explants which had been initiated on 2,4-d/BA at 2.0/1.0 M were transferred onto medium with 2.0 M zeatin, formation of shoots occurred within 2 to 3 weeks. The frequency of shoot formation was 14.6%. Subculture of these shoots onto MS medium without growth regulators gave rise to plantlets of normal appearance. Regeneration in C. metuliferus requires callus initiation on an appropriate growth regulator regime followed by transfer to a medium containing the cytokinin, zeatin, and can be achieved within 10–12 weeks.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - NAA napthaleneacetic acid  相似文献   
63.
Royal jelly was fractionated by ion-exchange chromatography and a protein (DIII protein) that had growth stimulating activity to the U-937 human myeloid cell line was obtained. The molecular weight of the DIII protein was 58 kDa on SDS-PAGE. The growth stimulating activity of the DIII protein was shown to be relatively heat and pH stable.  相似文献   
64.
The block to polyspermy in Xenopus laevis involves an interaction between a cortical granule lectin, released at fertilization, and a ligand located in the egg extracellular matrix. The egg extracellular matrix in X. laevis consists of a vitelline envelope and three distinct jelly layers, designated J1, J2 and J3. To localize cortical granule lectin ligand in the egg extracellular matrix, we used enzyme-linked lectin assays that showed that cortical granule lectin ligands were absent in J2, J3 and the vitelline envelope. Cortical granule lectin bound to a ligand(s) in J1 in a galactose-dependent fashion. In addition, we separated egg jelly macromolecules electrophoretically and, in conjunction with western blotting, have shown that J1 contains two major, high molecular weight ligands for cortical granule ligand. Finally, using confocal microscopy, we demonstrated that the ligand(s) for cortical granule lectin occupies a 20–30 μm thick band in a region of J1 just proximal to the vitelline envelope.  相似文献   
65.
Pretreatment of Strongylocentrotus purpuratus sperm with delta 9-tetrahydrocannabinol (THC) prevents the triggering of the acrosome reaction by egg jelly. Examination of THC-treated sperm by transmission electron microscopy reveals that the membrane fusion reaction between the sperm plasma membrane and the acrosomal membrane is completely blocked. Electron-dense deposits are present in the subacrosomal fossa and in the centriolar fossa. The nuclear envelope is fragmented in close proximity to the electron-dense deposits. The electron-dense deposits are not bound by a limiting membrane, stain positively for lipid with thymol and farnesol, and disappear from THC-treated sperm that are extracted with chloroform:methanol (2:1) after glutaraldehyde fixation. The electron-dense deposits are lipid in nature and may be a hydrolytic product of the nuclear envelope. Electron-dense deposits are seen in sperm after 1-10 min treatment with 5-100 microM THC. The electron-dense deposits disappear after removal of THC from the sperm by washing, but the fragmented nuclear envelope in the subacrosomal fossa persists. Cannabidiol (CBD) and cannabinol (CBN) also inhibit the triggering of the acrosome reaction by egg jelly and produce ultrastructural changes in the sperm identical to those elicited by THC. Enhanced phospholipase activity stimulated by THC, CBD, and CBN may be the cause of the accumulation of lipid deposits in the sperm. Metabolites derived from this modification of membrane phospholipids may prevent triggering of the acrosome reaction by egg jelly and thereby inhibit fertilization.  相似文献   
66.
delta 9-Tetrahydrocannabinol (THC) and two other major cannabinoids derived from marihuana--cannabidiol (CBD) and cannabinol (CBN)--inhibit fertilization in the sea urchin Strongylocentrotus purpuratus by reducing the fertilizing capacity of sperm (Schuel et al., 1987). Sperm fertility depends on their motility and on their ability to undergo the acrosome reaction upon encountering the egg's jelly coat. Pretreatment of S. purpuratus sperm with THC prevents triggering of the acrosome reaction by solubilized egg jelly in a dose (0.1-100 microM) and time (0-5 min)-dependent manner. Induction of the acrosome reaction is inhibited in 88.9 +/- 2.3% of sperm pretreated with 100 microM THC for 5 min, while motility of THC-treated sperm is not reduced compared to solvent (vehicle) and seawater-treated controls. The acrosome reaction is inhibited 50% by pretreatment with 6.6 microM THC for 5 min and with 100 microM THC after 20.8 sec. CBN and CBD at comparable concentrations inhibit the acrosome reaction by egg jelly in a manner similar to THC. THC does not inhibit the acrosome reaction artificially induced by ionomycin, which promotes Ca2+ influx, and nigericin, which promotes K+ efflux. THC partially inhibits (20-30%) the acrosome reaction induced by A23187, which promotes Ca2+ influx, and NH4OH, which raises the internal pH of the sperm. Addition of monensin, which promotes Na+ influx to egg jelly or to A23187, does not overcome the THC inhibition. Inhibition of the egg jelly-induced acrosome reaction by THC produces a corresponding reduction in the fertilizing capacity of the sperm. The adverse effects of THC on the acrosome reaction and sperm fertility are reversible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
67.
Many neural disorders are characterized by the loss of one or several types of neural cells. Human umbilical cord-derived mesenchymal cells (hUCMs) are capable of differentiating into neuron, astroglia-like and oligodendrocyte cell types. However, a reliable means of inducing the selective differentiation of hUCMs into neural cells in vitro has not yet been established. For induction of neural differentiation, hUCMs were seeded onto sterile glass slides and six various cocktails using a base medium (DMEM/LG) supplemented with 10 % FBS, retinoic acid (RA), dimethyl sulfoxide (DMSO), epidermal growth factor (EGF) and fibroblast growth factor (FGF) were used to compare their effect on neuronal, astrocyte and oligodandrocyte differentiation. The hUCMs were positive for mesenchymal markers, while they were negative for hematopoietic markers. Differentiation to adipogenic and osteogenic lineage was detected in these cells. Our data revealed that the cocktail consisting of DMEM/LG, FBS, RA, FGF, and EGF (DF/R/Fg/E group) induced hUCM cells to express the highest percentage of nestin, ß-tubulin III, neurofilament, and CNPase. The DF/Ds/Fg/E group led to the highest percentage of GFAP expression. While the expression levels of NF, GFAP, and CNPase were the lowest in the DF group. The least percentage of nestin and ß-tubulin III expression was observed in the DF/Ds group. We may conclude that FGF and EGF are important inducers for differentiation of hUCMs into neuron, astrocyte and oligodendrocyte. RA can induce hUCMs to differentiate into neuron and oligodendrocyte while for astrocyte differentiation DMSO had a pivotal role.  相似文献   
68.
《Cytotherapy》2014,16(5):640-652
Background aimsMesenchymal stromal cells (MSCs) have remarkable clinical potential for cell-based therapy. Wharton's jelly-derived mesenchymal stromal cells (WJ-MSCs) from umbilical cord share unique properties with both embryonic and adult stem cells. MSCs are found at low frequency in vivo, and their successful therapeutic application depends on rapid and efficient large-scale expansion in vitro. Non-muscle myosin II (NMII) has pivotal roles in different cellular activities, such as cell division, migration and differentiation. We performed this study to understand the role of NMII in proliferation and cell cycle progression in WJ-MSCs.MethodsWJ-MSCs were cultured in the presence of blebbistatin, and cell cycle analysis was performed using flow cytometry, proliferation kinetics, senescence assay and gene expression profile using polymerase chain reaction array.ResultsWhen cultured in the presence of blebbistatin, an inhibitor of NMII adenosine triphosphatase activity, WJ-MSCs exhibited dose-dependent reduction in proliferative potential along with increase in cell size and induction of early senescence. Inhibition of NMII activity also affected cell cycle progression in WJ-MSCs and led to an increase in the percentage of cells in G0/G1 phase with a corresponding reduction in the percentage of cells in G2/M phase. Blebbistatin-induced G0/G1 arrest of WJ-MSCs was further associated with up-regulation of cell cycle inhibitory genes CDKN1A, CDKN2A and CDKN2B and down-regulation of numerous genes related to progression through S and M phases of the cell cycle.ConclusionsOur study demonstrates that inhibition of NMII activity in WJ-MSCs leads to G0/G1 arrest and alteration in the expression levels of certain key cell cycle-related genes.  相似文献   
69.
Royal jelly contains numerous components, including proteins. Major royal jelly protein (MRJP) 1 is the most abundant protein among the soluble royal jelly proteins. In its physiological state, MRJP 1 exists as a monomer and/or oligomer. This study focuses the molecular characteristics and functions of MRJP 1 oligomer. MRJP 1 oligomer purified using HPLC techniques was subjected to the following analyses. The molecular weight of MRJP 1 oligomer was found to be 290 kDa using blue native‐PAGE. MRJP 1 oligomer was separated into 55 and 5 kDa spots on 2‐D blue native/SDS‐PAGE. The 55 kDa protein was identified as MRJP 1 monomer by proteome analysis, whereas the 5 kDa protein was identified as Apisimin by N‐terminal amino acid sequencing, and this protein may function as a subunit‐joining protein within MRJP 1 oligomer. We also found that the oligomeric form included noncovalent bonds and was stable under heat treatment at 56°C. Furthermore, MRJP 1 oligomer dose dependently enhanced and sustained cell proliferation in the human lymphoid cell line Jurkat. In conclusion, MRJP 1 oligomer is a heat‐resistant protein comprising MRJP 1 monomer and Apisimin, and has cell proliferation activity. These findings will contribute to further studies analyzing the effects of MRJP 1 in humans.  相似文献   
70.
This study illustrates multifunctionality of proteins of honeybee royal jelly (RJ) and how their neofunctionalization result from various PTMs of maternal proteins. Major proteins of RJ, designated as apalbumins belong to a protein family consisting of nine members with Mr of 49–87 kDa and they are accompanied by high number of minority homologs derived from maternal apalbumins. In spite of many data on diversity of apalbumins, the molecular study of their individual minority homologous is still missing. This work is a contribution to functional proteomics of second most abundant protein of RJ apalbumin2 (Mr 52.7 kDa). We have purified a minority protein from RJ; named as apalbumin2a, differ from apalbumin2 in Mr (48.6 kDa), in N‐terminal amino acids sequences – ENSPRN and in N‐linked glycans. Characterization of apalbumin2a by LC‐MALDI TOF/TOF MS revealed that it is a minority homolog of the major basic royal jelly protein, apalbumin2, carrying two fully occupied N‐glycosylation sites, one with high‐mannose structure, HexNAc2Hex9, and another carrying complex type antennary structures, HexNAc4Hex3 and HexNAc5Hex4. We have found that apalbumin2a inhibit growth of Paenibacillus larvae. The obtained data call attention to functional plasticity of RJ proteins with potential impact on functional proteomics in medicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号