首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   15篇
  国内免费   7篇
  2022年   1篇
  2021年   3篇
  2019年   2篇
  2018年   2篇
  2017年   8篇
  2016年   7篇
  2015年   8篇
  2014年   4篇
  2013年   4篇
  2012年   8篇
  2011年   8篇
  2010年   7篇
  2009年   11篇
  2008年   19篇
  2007年   20篇
  2006年   11篇
  2005年   9篇
  2004年   11篇
  2003年   6篇
  2002年   4篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有185条查询结果,搜索用时 31 毫秒
91.
A study of the isotopic composition of organic matter was conducted in a freshwater marsh over seasonal and diel time scales to determine the sources of dissolved organic matter (DOM) and the processes leading to its formation. Bulk C and N isotopic compositions of the bacterial fraction (0.2–0.7 m) and particulate organic matter (POM; 0.7–10 m) were compared on a seasonal basis with the change in 13C of DOM. The bulk isotopic data support the idea that DOM was, in part, derived from the breakdown of larger organic matter fractions. The bacterial fraction and POM were compositionally similar throughout the year, based on a comparison of the 13C of individual amino acids in each fraction. Annual variation in the 13C of amino acids in DOM was greater relative to the variation in larger fractions indicating that microbial reworking was an important factor determining the proteinaceous component of DOM. The 13C enrichment of serine and leucine in each organic matter fraction suggested microbial reworking was an important factor determining organic matter composition during the most productive times of year. Changes in the bulk 13C of DOM were more significant over daily, relative to seasonal, time scales where values ranged by 6 and followed changes in chlorophyll a concentrations. Although bulk 13C values for POM ranged only from –29 to –28 during the same diel period, the 13C of alanine in POM ranged from –30 to –22. Alanine is directly synthesized from pyruvate and is therefore a good metabolic indicator. The 13C of individual amino acids in DOM revealed the diel change in the importance of autotrophic versus heterotrophic activity in influencing DOM composition. Diel changes in the 13C of phenylalanine, synthesized by common pathways in phytoplankton and bacteria, were similar in both DOM and POM. The diel change in 13C of isoleucine and valine, synthesized through different pathways in phytoplankton and bacteria, were distinctly different in DOM versus POM. This disparity indicated a decoupling of the POM and DOM pools, which suggests a greater source of bacterial-derived organic matter at night. The results of this study demonstrate the use of the isotopic composition of individual amino acids in determining the importance of microbial reworking and autotrophic versus heterotrophic contributions to DOM over both diel and seasonal time scales.  相似文献   
92.
Elevated CO2 has been shown to increase methane emissions in herbaceous wetlands, but it is not clear that this will occur in wetlands dominated by woody plants or in wetlands that are not inundated. We determined the effects of elevated CO2 and water table position on methane emission and oxidation rates from plant-soil microcosms planted with a woody tree, Taxodium distichum, or an emergent aquatic macrophyte, Orontium aquaticum. Experiments were conducted in replicate glasshouses (n = 2) at CO2 concentrations of either 350 or 700 ppmv. Plants were grown from seed and subjected to two water level depths, flooded (+5 cm above the soil surface) and non-flooded (–10 cm for T. distichum and –6 cm for O. aquaticum). Elevated CO2 increased whole-plant photosynthetic rates in both water table treatments. Methane emission rates increased by 62 to 69% in the T. distichum treatment and 27 to 29% in the O. aquaticum treatment. Whole-plant photosynthesis and biomass were strongly correlated with methane emissions (r2 0.75, P 0.01). This relationship provides evidence of a tight coupling between plant and microbial activity and suggests that similar relationships from other wetland studies measured at ambient CO2 can be extrapolated into the future. In the O. aquaticum, non-flooded treatment, methanotrophy consumed 14 and 22% (replicate glasshouses) of the methane produced in the ambient treatment compared to 29 and 36% in the elevated CO2 treatment. However, there was no significant methane oxidation detected in the flooded treatment. We concluded that woody and non-woody wetland ecosystems growing in a future CO2-enriched atmosphere will emit more methane regardless of water table position, but the degree of stimulation will be sensitive to changes in water table position, particularly in forested wetlands.  相似文献   
93.
This study was undertaken to determine the rates and controls ofanaerobic respiration reactions coupled to organic matter mineralization as afunction of space and time along a transect from a bioturbated creekbank to themidmarsh in Georgia saltmarsh sediments. Sulfate reduction rates (SRR) weremeasured at 3 sites during 5 sampling periods throughout the growth season. Thesites differed according to hydrologic regime and the abundance of dominantplants and macrofauna. SRR and pore water / solid phase geochemistry showedevidence of enhanced sediment oxidation at sites exposed to intensebioturbation. Iron(III) reduction rates (FeRR) were directly determined insaltmarsh sediments for the first time, and in agreement with measured SRR,higher rates were observed at the bioturbated, unvegetated creekbank (BUC) andbioturbated, vegetated levee (BVL) sites in comparison to a vegetated mid-marsh(MM) site. An unexpected result was the fact that SRR varied nearly as muchbetween sites (2–3 x) as it did with temperature or season (3–4 x).The BVL site, vegetated by the tall form of Spartinaalterniflora, always exhibited the highest SRR and carbon oxidationrates (> 4000 nmol cm–3 d–1) with high activity levels extending deep ( 50 cm)into the sediment, while the MM site, dominated by the short form ofSpartina, always exhibited the lowest SRR which werelocalized to the top 15 cm of sediment. SRR and FeRR at BUC wereintermediate between those measured at the BVL and MM. Acetate was the mostabundant microbial fermentation product (concentrations up to > 1mM) in marsh porewaters, and its distribution reflectedrespirationactivity. Chemical exchange, caused by bioturbation, appeared to be the primarycontrol explaining trends in rates of sulfate and Fe(III) reduction withmacrophytes and carbon source acting as secondary controls.  相似文献   
94.
Twenty-two years of rainfall data from six sites, 5 years of animal migration data and 2 years of water quality at 13 sites were explored to quantify the role of water in the Tarangire ecosystem. Inter-annual fluctuations in rainfall were large and not predictable solely from the Southern Oscillation Index. Seasonal fluctuations of rainfall were pronounced, with marked wet and dry seasons. In the dry season, the only drinking water available for wildlife was the Tarangire River and a number of small, scattered wetland-fringed water holes. Their salinity was often high (>8 ppt) and was higher in dry years than in wet years, as well as at the start of the wet season. Water quantity and quality may control the annual migration of wildebeest, zebra, elephants and buffaloes. These animals aggregate in the dry season in areas with the least salty water. The timing of seasonal variations in rainfall is largely predictable and controls annual migration. All wildebeest and most zebras migrated out of Tarangire National Park and into the wider Tarangire ecosystem at the start of the wet season, and they returned into the park in the dry season. Some elephants and buffaloes also migrated in out of the park and a larger resident population remained, whose size may vary inter-annually depending on surface water quantity and quality. The extent of the migration zone may also vary inter-annually.This revised version wa published online in March 2005 with corrections to the issue cover date.  相似文献   
95.
Wetland conservation in the Indo-tropics can benefit from the protection of the charismatic Fishing Cat. India, supporting ∼ 40% of its known range, is a stronghold for the species. Here, using multiple information sources we outline a framework to safeguard fishing cats in India. Specifically, we a) estimated district-level Conservation priority scores (using presence records, and habitat suitability and habitat connectivity) to identify ecologically important habitats, b) estimated state-level Conservation likelihood scores assessing the success potential of any conservation intervention, c) collated district-level Conservation initiative information identifying ongoing efforts for species and/or habitat conservation. We consecutively assessed the spatial congruence between (a), (b) and (c) to delineate species’ conservation areas and corresponding action goals (blueprint). Using information on habitat suitability, we also delineated survey landscapes. Although Fishing Cat records were found in 12 Indian states, only a small proportion of the state area was identified harbouring optimal habitat for the species. Three broad habitat clusters - Terai arc, Eastern coast, and Brahmaputra floodplains - were identified, with overall high habitat connectivity. Most districts ranking high in Conservation priority scored low in Conservation likelihood. Districts with Fishing Cat presence (n = 60) were delineated into four tiers of action landscapes and the majority of districts classified as survey landscapes (n = 156) were found in the Terai arc. We use our results to recommend and discuss conservation actions for districts identified in our blueprint. Flagship species conservation approach has substantial potential to enrich wetland conservation, for which our blueprint can act as a baseline.  相似文献   
96.
97.
This study analyzes the population structure and dynamics of an invasive population of Procambarus clarkii (Girard, 1852) in a Mediterranean wetland using the Bhattacharya’s and Von Bertallanfy’s analytical methods. The main purpose was to collect biological data necessary for the management of this nuisance species. A maximum of five age classes were identified for both sexes, three of which being composed of a few or zero individuals. Age classes were classified into two subgroups––spring (SpL) and summer (SuL) lines––on the basis of the different hatching periods. Individuals of SpL showed a faster growth rate and reached a larger body size than those belonging to SuL, probably because they were able to grow for a longer time. No between-sex differences were found in growth patterns except for the asymptotic length (L), which was reached faster by the females. Other population properties were analyzed, such as a high mortality rate, a maximum longevity of 4 years, and a low mean life-time (<12 months). Finally, a relatively small fraction of individuals seemed to survive after the first reproductive peak in spring. Consequently, the structure and dynamics of the study population seem to reveal its stability and spreading potential, as a confirmation of the invasiveness of P. clarkii in Mediterranean wetlands. Handling editor: P. Viaroli  相似文献   
98.
Biomass, P concentration, P amount and chlorophyll in three floating and three rooted macrophytes growing in wetlands of the Middle Paraná River floodplain measured in winter and summer were compared. Macrophytes were sampled three times in summer and twice in winter, in the period 2002/2004. Although Pistia stratiotes was the species with the highest P concentration in leaves and roots, Typha domingensis, Eichhornia crassipes and Pontederia cordata were the most efficient species in P retention in natural wetlands because of their higher biomass. Total P amount in rooted species did not show seasonal variations. However, T. domingensis accumulated a greater P amount in its aerial part in summer, whereas in winter it did so in its below-ground parts, indicating an important P dynamic regarding translocation within the plant. In summer, floating species were able to accumulate great quantities of P in a short period due to their high growth rate. In order to optimize and maintain the efficiency of constructed wetlands for P removal throughout the year, a selection of floating and rooted species should be used.  相似文献   
99.
We examined the relationships between an index of wetland habitat quality and disturbance (ORAM score) and an index of vascular plant integrity (VIBI-FQ score) with moss species richness and a moss quality assessment index (MQAI) in 45 wetlands in three vegetation types in Ohio, USA. Species richness of mosses and MQAI were positively associated with ORAM and VIBI-FQ scores. VIBI-FQ score was a better predictor of both moss species richness and MQAI than was either ORAM score or vegetation type. This result was consistent with the strict microhabitat requirements for many moss species, which may be better assessed by VIBI-FQ than ORAM. Probability curves as a function of VIBI-FQ score were then generated for presence of groups of moss species having the same degree of fidelity to substrate and plant communities relative to other species in the moss flora (coefficients of conservatism, CCs). Species having an intermediate- or high degree of fidelity to substrate and plant communities (i.e., species with CC  5) had a 50% probability of presence (P50) and 90% probability of presence (P90) in wetlands with intermediate- and high VIBI-FQ scores, respectively. Although moss species richness, probability of presence of species based on CC, and MQAI may reflect wetland habitat quality, the 95% confidence intervals around P50 and P90 values may be too wide for regulatory use. Moss species richness, MQAI, and presence of groups of mosses may be more useful for evaluating moss habitat quality in wetlands than a set of “indicator species.”  相似文献   
100.
Mosses and vascular plants have been shown to be reliable indicators of wetland habitat delineation and environmental quality. Knowledge of the best ecological predictors of the quality of wetland moss and vascular plant communities may determine if similar management practices would simultaneously enhance both populations. We used Akaike's Information Criterion to identify models predicting a moss quality assessment index (MQAI) and a vascular plant index of biological integrity based on floristic quality (VIBI-FQ) from 27 emergent and 13 forested wetlands in Ohio, USA. The set of predictors included the six metrics from a wetlands disturbance index (ORAM) and two landscape development intensity indices (LDIs). The best single predictor of MQAI and one of the predictors of VIBI-FQ was an ORAM metric that assesses habitat alteration and disturbance within the wetland, such as mowing, grazing, and agricultural practices. However, the best single predictor of VIBI-FQ was an ORAM metric that assessed wetland vascular plant communities, interspersion, and microtopography. LDIs better predicted MQAI than VIBI-FQ, suggesting that mosses may either respond more rapidly to, or recover more slowly from, anthropogenic disturbance in the surrounding landscape than vascular plants. These results supported previous predictive studies on amphibian indices and metrics and a separate vegetation index, indicating that similar wetland management practices may result in qualitatively the same ecological response for three vastly different wetland biological communities (amphibians, vascular plants, and mosses).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号