首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6982篇
  免费   555篇
  国内免费   1186篇
  2024年   9篇
  2023年   129篇
  2022年   141篇
  2021年   173篇
  2020年   214篇
  2019年   230篇
  2018年   224篇
  2017年   284篇
  2016年   317篇
  2015年   263篇
  2014年   267篇
  2013年   382篇
  2012年   235篇
  2011年   334篇
  2010年   234篇
  2009年   390篇
  2008年   416篇
  2007年   447篇
  2006年   417篇
  2005年   348篇
  2004年   287篇
  2003年   262篇
  2002年   212篇
  2001年   209篇
  2000年   184篇
  1999年   175篇
  1998年   178篇
  1997年   140篇
  1996年   151篇
  1995年   129篇
  1994年   118篇
  1993年   117篇
  1992年   130篇
  1991年   107篇
  1990年   108篇
  1989年   97篇
  1988年   75篇
  1987年   67篇
  1986年   62篇
  1985年   58篇
  1984年   59篇
  1983年   38篇
  1982年   79篇
  1981年   59篇
  1980年   56篇
  1979年   45篇
  1978年   19篇
  1977年   19篇
  1976年   8篇
  1973年   7篇
排序方式: 共有8723条查询结果,搜索用时 109 毫秒
21.
Sensitive biological measures of river ecosystem quality are needed to assess, maintain or restore ecological conditions of water bodies. Since our understanding of these complex systems is imperfect, decision-making requires recognizing uncertainty. In this study, a new predictive multi-metric index based on fish functional traits was developed to assess French rivers. Information on fish assemblage structure, local environment and human-induced disturbances of 1654 French river sites was compiled. A Bayesian framework was used to predict theoretical metric values in absence of human pressure and to estimate the uncertainty associated with these predictions. The uncertainty associated with the index score gives the confidence associated with the evaluation of site ecological conditions.Among the 228 potential metrics tested, only 11 were retained for the index computation. The final index is independent from natural variability and sensitive to human-induced disturbances. In particular, it is affected by the accumulation of different degradations and specific degradations including hydrological perturbations. Predictive uncertainty is globally lower for IPR+ than for underlying metrics.This new methodology seems appropriate to develop bio-indication tools accounting for uncertainty related to reference condition definition and could be extended to other biological groups and areas. Our results support the use of multi-metric indexes to assess rivers and strengthen the idea that examination of uncertainty could contribute greatly to the improvement of the assessment power of bio-indicators.  相似文献   
22.
N-stable isotope analysis of macroalgae has become a popular method for the monitoring of nitrogen pollution in aquatic ecosystems. Basing on changes in their δ15N, macroalgae have been successfully used as biological traps to intercept nitrogen inputs. As different nitrogen sources differ in their isotopic signature, this technique provides useful information on the origin of pollutants and their extension in the water body. However, isotopic fractionation potentially resulting from microbial nitrogen processing, and indirect isotopic variations due to effects of physicochemical conditions on algal nutrient uptake and metabolism, may affect anthropogenic N isotopic values during transportation and assimilation. This in turn can affect the observed isotopic signature in the algal tissue, inducing isotopic variations not related to the origin of assimilated nitrogen, representing a “background noise” in isotope-based water pollution studies.In this study, we focused on three neighbouring coastal lakes (Caprolace, Fogliano and Sabaudia lakes) located south of Rome (Italy). Lakes were characterized by differences in terms of anthropogenic pressure (i.e. urbanization, cultivated crops, livestock grazing) and potential “background noise” levels (i.e. nutrient concentration, pH, microbial concentration). Our aim was to assess nitrogen isotopic variations in fragments of Ulva lactuca specimens after 48 h of submersion to identify and locate the origins of nitrogen pollutants affecting each lake. δ15N were obtained for replicated specimens of U. lactuca spatially distributed to cover the entire surface of each lake, previously collected from a benchmark, unpolluted site. In order to reduce the environmental background noise on isotopic observations, a Bayesian hierarchical model relating isotopic variation to environmental covariates and random spatial effects was used to describe and understand the distribution of isotopic signals in each lake.Our procedure (i) allowed to remove background noise and confounding effects from the observed isotopic signals; (ii) allowed to detect “hidden” pollution sources that would not be detected when not accounting for the confounding effect of environmental background noise; (iii) produced maps of the three lakes providing a clear representation of the isotopic signal variation even where background noise was high. Maps were useful to locate nitrogen pollution sources, identify the origin of the dissolved nitrogen and quantify the extent of pollutants, showing localized organic pollution impacting Sabaudia and Fogliano, but not Caprolace. This method provided a clear characterization of both intra- and inter-lake anthropogenic pressure gradients, representing a powerful approach to the ecological indication and nitrogen pollution management in complex systems, as transitional waterbodies are.  相似文献   
23.
24.
1. Macroinvertebrate community composition was assessed in small streams of the Melbourne region to test the effects of (a) urban density (catchment imperviousness 0–51%) and (b) stormwater drainage intensity (comparing the intensively drained metropolitan area with urban areas of the hinterland, which had open drains and some localized stormwater drainage).
2. Hinterland communities separated into two groups of sites correlating strongly with patterns of electrical conductivity (EC), basalt geology and annual rainfall. Community composition varied little in the high-EC, western group (imperviousness 0.2–1.2%), but in the eastern group it was strongly correlated with catchment imperviousness (0–12%), with lower taxon richness in more impervious catchments.
3. Metropolitan communities (imperviousness 1–51%) were all severely degraded, with high abundances of a few tolerant taxa. Community composition was poorly correlated with patterns of geology, rainfall or imperviousness. Differences between metropolitan and hinterland communities were well explained by patterns of biochemical oxygen demand and electrical conductivity, which were postulated to indicate the more efficient transport of pollutants to receiving streams by the metropolitan stormwater drainage system.
4. Degradation of macroinvertebrate community composition was well explained by urban density but intensive urban drainage increased degradation severely at even low urban densities. Quantification of relationships between imperviousness, drainage intensity and stream degradation can better inform the assessment, conservation and restoration of urban streams.  相似文献   
25.
Work aimed at assessing status and introducing water conservation regimes for coffee production in southern Saudi Arabian highlands. Data on farm locations, altitudes, areas, practices, irrigation, tree density, and annual coffee production were analyzed. Field experiment using chlorophyll fluorescence and different irrigation regimes was conducted to examine effects of reducing irrigation frequency on photosynthesis. Results indicated that Coffea arabica L. is commonly grown at altitudes of 1300–1400 m. Plants grown at 4–6 Trees m?2 using 100 kg ha?1 mineral fertilizer produce an average of 3 t ha?1. High frequency 2-day-intervals irrigation regime practiced by farmers during the dry season presents ecological challenge to limited local artesian water resources. Changes in chlorophyll fluorescence under 14-day-intervals irrigation regime initiated water stress that markedly inhibited Photosystem II efficiency and quantum yield and increased non-photochemical energy dissipation. Applying a 7-day-intervals irrigation regime induced less inhibitory effects on Photosystem II. Results also indicated that shifting from 2-day-intervals irrigation regime to 7-day-intervals regime improves coffee agroecology and directs coffee production towards sustainability.  相似文献   
26.
An extensive review of the literature describing epiphytes on submerged aquatic vegetation (SAV), especially seagrasses, was conducted in order to evaluate the evidence for response of epiphyte metrics to increased nutrients. Evidence from field observational studies, together with laboratory and field mesocosm experiments, was assembled from the literature and evaluated for a hypothesized positive response to nutrient addition. There was general consistency in the results to confirm that elevated nutrients tended to increase the load of epiphytes on the surface of SAV, in the absence of other limiting factors. In spite of multiple sources of uncontrolled variation, positive relationships of epiphyte load to nutrient concentration or load (either nitrogen or phosphorus) often were observed along strong anthropogenic or natural nutrient gradients in coastal regions. Such response patterns may only be evident for parts of the year. Results from both mesocosm and field experiments also generally support the increase of epiphytes with increased nutrients, although outcomes from field experiments tended to be more variable. Relatively few studies with nutrient addition in mesocosms have been done with tropical or subtropical species, and more such controlled experiments would be helpful. Experimental duration influenced results, with more positive responses of epiphytes to nutrients at shorter durations in mesocosm experiments versus more positive responses at longer durations in field experiments. In the field, response of epiphyte biomass to nutrient additions was independent of climate zone. Mesograzer activity was a critical covariate for epiphyte response under experimental nutrient elevation, but the epiphyte response was highly dependent on factors such as grazer identity and density, as well as nutrient and ambient light levels. The balance of evidence suggests that epiphytes on SAV will be a useful indicator of persistent nutrient enhancement in many situations. Careful selection of appropriate temporal and spatial constraints for data collection, and concurrent evaluation of confounding factors will help increase the signal to noise ratio for this indicator.  相似文献   
27.
The concentration and chemical fractionation of globally alarming six heavy metals (Cr, Ni, Cu, As, Cd and Pb) were measured in surface water and sediment of an urban river in Bangladesh. The decreasing trend of metals were observed in water as Cr > Cu > As > Ni > Pb > Cd and in sediment as Cr > Ni > Cu > Pb > As > Cd. The level of studied metals exceeded the safe limits of drinking water, indicated that water from this river is not safe for drinking and/or cooking purposes. However, the investigated metals showed low mobility except for Cd and Pb which could pose a severe threat to the aquatic environment. Contamination factor (CF) and geoaccumulation index (Igeo) demonstrated that most of the sediment samples were moderately to heavily contaminated by Cr, As, Cd and Pb. The pollution load index (PLI) values were above one (>1) indicates progressive deterioration of the sediment quality. The extent of pollution by heavy metals in the river Korotoa implies that the condition is much frightening to the biota and inhabitants in the vicinity of the river as well.  相似文献   
28.
Adoption of reduced‐impact logging (RIL) methods could reduce CO2 emissions by 30–50% across at least 20% of remaining tropical forests. We developed two cost effective and robust indices for comparing the climate benefits (reduced CO2 emissions) due to RIL. The indices correct for variability in the volume of commercial timber among concessions. We determined that a correction for variability in terrain slope was not needed. We found that concessions certified by the Forest Stewardship Council (FSC, N = 3), when compared with noncertified concessions (= 6), did not have lower overall CO2 emissions from logging activity (felling, skidding, and hauling). On the other hand, FSC certified concessions did have lower emissions from one type of logging impact (skidding), and we found evidence of a range of improved practices using other field metrics. One explanation of these results may be that FSC criteria and indicators, and associated RIL practices, were not designed to achieve overall emissions reductions. Also, commonly used field metrics are not reliable proxies for overall logging emissions performance. Furthermore, the simple distinction between certified and noncertified concessions does not fully represent the complex history of investments in improved logging practices. To clarify the relationship between RIL and emissions reductions, we propose the more explicit term ‘RIL‐C’ to refer to the subset of RIL practices that can be defined by quantified thresholds and that result in measurable emissions reductions. If tropical forest certification is to be linked with CO2 emissions reductions, certification standards need to explicitly require RIL‐C practices.  相似文献   
29.
Wastewater treatment facility is vital for sustainable urban development. In the course of removing contaminants and discharging ready-for-reuse water, wastewater treatment consumes resources and triggers environmental emission during its lifetime. A comprehensive framework to analyze the embodied ecological elements as natural resources and environmental emissions of wastewater treatment is presented in this work. The systems method as a combination of process and input–output analyses is applied and a set of indicators are accordingly devised. Two representative ecological elements, i.e., greenhouse gases emissions and solar emergy of alternative wastewater treatment systems, i.e., a traditional activated sludge wastewater treatment plant and a constructed wetland have been taken into consideration. For each ecological element, five indicators have been calculated and compared to assess the impact on climate change and resources utilizing style of the case systems. The framework raised in this paper is fully supportive for optimal decision-making among different wastewater treatment technologies, and could be transplanted to be applied to systems ecological accounting for other production systems.  相似文献   
30.
Abstract. Gas exchange, leaf-nitrogen concentration and water potential were measured in early and late spring in early successional herbaceous plants occurring after cutting and after fire, and in mature woody species from the Mediterranean climax community Quercetum ilicis in central Italy. Net photosynthesis peaked in early spring in all species studied when values for temperature and light were lower but leaf-nitrogen content was higher as compared to late spring, suggesting that nitrogen more than energy input controlled photosynt-hetic rates. Herbaceous pioneer species occurring after cutting showed higher field photo synthetic capacity than evergreen climax trees and shrubs. By contrast, net photosynthesis of herbaceous species occurring in a persistent stage after fire, was in the same range as that of climax trees. This evidence suggests that carbon-gaining appears to be partly related to the dynamic stage of succession and not solely to the growth form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号