首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   20篇
  国内免费   2篇
  2023年   7篇
  2022年   4篇
  2021年   6篇
  2020年   12篇
  2019年   14篇
  2018年   19篇
  2017年   9篇
  2016年   3篇
  2015年   11篇
  2014年   11篇
  2013年   15篇
  2012年   16篇
  2011年   13篇
  2010年   10篇
  2009年   4篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2004年   3篇
  2003年   3篇
  2000年   2篇
  1997年   1篇
排序方式: 共有176条查询结果,搜索用时 250 毫秒
131.
The high temperature requirement factor A1 (HTRA1) is a serine protease which modulates an array of signalling pathways driving basal biological processes. HTRA1 plays a significant role in cell proliferation, migration and fate determination, in addition to controlling protein aggregates through refolding, translocation or degradation. The mutation of HTRA1 has been implicated in a plethora of disorders and this has also led to its growing interest as drug therapy target. This review details the involvement of HTRA1 in certain signalling pathways, namely the transforming growth factor beta (TGF-β), canonical Wingless/Integrated (WNT) and NOTCH signalling pathways during organogenesis and various disease pathogenesis such as preeclampsia, age-related macular degeneration (AMD), small vessel disease and cancer. We have also explored possible avenues of exploiting the serine proteases for therapeutic management of these disorders.  相似文献   
132.
The purpose of our study was to investigate the effects of the long noncoding RNA (lncRNA) ABHD11-AS1 on colorectal cancer (CRC) progression and further explore its possible underlying mechanisms. In the study, we found that ABHD11-AS1 was highly expressed in CRC tissues and cell lines. High ABHD11-AS1 expression was correlated with poor overall survival of patients with CRC. ABHD11-AS1 knockdown reduced CRC cell proliferation, in vitro invasion, and in vivo tumor growth. Investigation of the underlying mechanism showed that ABHD11-AS1 could act as a molecular sponge of miR-1254, and WNT11 was a downstream target of miR-1254 in CRC. Moreover, there was a negative association between ABHD11-AS1 expression (or WNT11) and miR-1254 in CRC tissues. The rescue assays showed that WNT11 overexpression partially rescued the effects of ABHD11-AS1 inhibition on CRC progression. Thus, we demonstrated that ABHD11-AS1 promotes CRC progression through the miR-1254-WNT11 pathway, which provides a new insight into the therapeutic strategies for CRC.  相似文献   
133.
Maintenance of tissue homeostasis and immune surveillance are important functions of the lymphatic vascular system. Lymphatic vessels are lined by lymphatic endothelial cells (LECs). By gene micro-array expression studies we recently compared human lymphangioma-derived LECs with umbilical vein endothelial cells (HUVECs). Here, we followed up on these studies. Besides well-known LEC markers, we observed regulation of molecules involved in immune regulation, acetylcholine degradation and platelet regulation. Moreover we identified differentially expressed WNT pathway components, which play important roles in the morphogenesis of various organs, including the blood vascular system. WNT signaling has not yet been addressed in lymphangiogenesis. We found high expression of FZD3, FZD5 and DKK2 mRNA in HUVECs, and WNT5A in LECs. The latter was verified in normal skin-derived LECs. With immunohistological methods we detected WNT5A in LECs, as well as ROR1, ROR2 and RYK in both LECs and HUVECs. In the human, mutations of WNT5A or its receptor ROR2 cause the Robinow syndrome. These patients show multiple developmental defects including the cardio-vascular system. We studied Wnt5a-knockout (ko) mouse embryos at day 18.5. We show that the number of dermal lymphatic capillaries is significantly lower in Wnt5a-null-mice. However, the mean size of individual lymphatics and the LEC number per vessel are greater. In sum, the total area covered by lymphatics and the total number of LECs are not significantly altered. The reduced number of lymphatic capillaries indicates a sprouting defect rather than a proliferation defect in the dermis of Wnt5a-ko-mice, and identifies Wnt5a as a regulator of lymphangiogenesis.  相似文献   
134.
135.
136.
Cancer stem cells (CSC) are rare immortal cells within a tumor that are able to initiate tumor progression, development, and resistance. Advances studies show that, like normal stem cells, CSCs can be both self-renewed and given rise to many cell types, therefore form tumors. A number of cell surface markers, such as CD44, CD24, and CD133 are frequently used to identify CSCs. CD133, a transmembrane glycoprotein, either alone or in collaboration with other markers, has been mainly considered to identify CSCs from different solid tumors. However, the exactness of CD133 as a cancer stem cell biomarker has not been approved yet. The clinical importance of CD133 is as a CSC marker in many cancers. Also, it contributes to shorter survival, tumor progression, and tumor recurrence. The expression of CD133 is controlled by many extracellular or intracellular factors, such as tumor microenvironment, epigenetic factors, signaling pathways, and miRNAs. In this study, it was attempted to determine: 1) CD133 function; 2) the role of CD133 in cancer; 3) CD133 regulation; 4) the therapeutic role of CD133 in cancers.  相似文献   
137.
138.
R-spondins (RSPOs) are a recently characterized family of secreted proteins that activate WNT/β-catenin signaling. In this study, we investigated the potential roles of the RSPO proteins during myogenic differentiation. Overexpression of the Rspo1 gene or administration of recombinant RSPO2 protein enhanced mRNA and protein expression of a basic helix-loop-helix (bHLH) class myogenic determination factor, MYF5, in both C2C12 myoblasts and primary satellite cells, whereas MYOD or PAX7 expression was not affected. RSPOs also promoted myogenic differentiation and induced hypertrophic myotube formation in C2C12 cells. In addition, Rspo2 and Rspo3 gene knockdown by RNA interference significantly compromised MYF5 expression, myogenic differentiation, and myotube formation. Furthermore, Myf5 expression was reduced in the developing limbs of mouse embryos lacking the Rspo2 gene. Finally, we demonstrated that blocking of WNT/β-catenin signaling by DKK1 or a dominant-negative form of TCF4 reversed MYF5 expression, myogenic differentiation, and hypertrophic myotube formation induced by RSPO2, indicating that RSPO2 exerts its activity through the WNT/β-catenin signaling pathway. Our results provide strong evidence that RSPOs are key positive regulators of skeletal myogenesis acting through the WNT/β-catenin signaling pathway.  相似文献   
139.
Recent observations suggest that melanoma cells drive disease progression by switching back and forth between phenotypic states of proliferation and invasion. Phenotype switching has been linked to changes in Wnt signalling, and we therefore looked for cell phenotype-specific differences in the levels and activity of β-catenin and its LEF/TCF co-factors. We found that while cytosolic β-catenin distribution is phenotype-specific (membrane-associated in proliferative cells and cytosolic in invasive cells), its nuclear distribution and activity is not. Instead, the expression patterns of two β-catenin co-factors, LEF1 and TCF4, are both phenotype-specific and inversely correlated. LEF1 is preferentially expressed by differentiated/proliferative phenotype cells and TCF4 by dedifferentiated/invasive phenotype cells. Knock-down experiments confirmed that these co-factors are important for the phenotype-specific expression of M-MITF, WNT5A and other genes and that LEF1 suppresses TCF4 expression independently of β-catenin. Our data show that melanoma cell phenotype switching behaviour is regulated by differential LEF1/TCF4 activity.  相似文献   
140.
Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133+ cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号