首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   6篇
  国内免费   8篇
  2023年   5篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   8篇
  2014年   8篇
  2013年   13篇
  2012年   4篇
  2011年   10篇
  2010年   3篇
  2009年   10篇
  2008年   13篇
  2007年   19篇
  2006年   15篇
  2005年   12篇
  2004年   11篇
  2003年   7篇
  2002年   6篇
  2001年   5篇
  2000年   4篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   7篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   3篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   7篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
排序方式: 共有256条查询结果,搜索用时 78 毫秒
41.
赵能  原晓龙  华梅  李苏雨  王娟  王毅 《广西植物》2017,37(2):242-247
地衣是一种传统的民族药物,能产生多种具有活性的物质。该研究对地衣型真菌(Xanthoria elegans,Myelochroa indica,Ramalina peruviana,Cladonia macilenta,Nephromopsis pallescens,Cladonia coccifera)进行液体培养,2个月后,培养液用乙酸乙酯萃取后获得初提物。该研究采用抑菌圈法评价地衣型真菌初提物对7种致病细菌(Bacillus subtilis,Bacillus cereus,Vibrio parahaemolyticus,Straphylococcus haemolyticus,Pseudomonas aeruginosa,Staphylococcus aureus,Micrococcus luteus)的抗菌活性,并测定最低抑菌浓度(MIC)。结果表明:6种地衣型真菌的初提物均具有一定的抗菌活性,且不同培养基对地衣型真菌产生抗菌物质有显著影响。其中,R.peruviana在MY液体培养基中所产生的次级代谢产物对金黄色葡萄球菌、藤黄微球菌、溶血性葡萄球菌、铜尿假单胞菌具有抑制效果,但在YMG培养基中所得初提物对供试7种致病细菌不具有抑菌效果。X.elegans在YMG培养基中所得初提物对枯草芽孢杆菌具有明显抗菌活性,其抑菌圈直径可达17.77 mm。该研究证实不同地衣型真菌液体培养初提物具有抗菌活性,不同的培养基也直接影响地衣型真菌抗菌效果。该研究结果为地衣型真菌的进一步研究及民族药的开发利用奠定了基础。  相似文献   
42.
Four new nanaomycins ( 1  –  4 ), together with two known compounds, nanaomycin αA ( 5 ) and nanaomycin βA ( 6 ) were isolated from a fermentation broth of Streptomyces hebeiensis derived from lichen. The structures of the new nanaomycins 1  –  4 were established using comprehensive NMR spectroscopic data analysis as well as UV, IR, and MS data. The antimicrobial activities of 1  –  6 were evaluated against Gram‐positive bacteria and fungus. Compounds 5 and 6 showed antimicrobial activities against the test microorganisms, while 1  –  4 were inactive at 100 μg/ml.  相似文献   
43.
44.
Four species of the genus, Bryoria were found in the Sučí Potok Valley: B. capilaris (Ach.) Brodo & D. Hawksw., B. fuscescens (Gyeln.) Brodo & D. Hawksw., B. implexa (Hoffm.) Brodo & D. Hawksw., B. nadvornikiana (Gyeln.) Brodo & D. Hawksw. The most common species in the valley was B. implexa. Four chemotypes of this lichen were recognized.  相似文献   
45.
The relative impact of lichen photobiont and mycobiont was evaluated by submitting nine lichen species with: (i) different photobiont types; (ii) different lichen growth forms; and (iii) different nutrients, pH, humidity preferences; to a range of Cu concentrations (μM) supplied in repeated cycles to simulate the natural process of uptake under field conditions. The physiological performance of the photosystem II photochemical reactions was measured using Fv/Fm and the metabolic activity of the mycobiont was evaluated using ergosterol and intracellular K-loss as indicators. Lichens with higher cation exchange capacity showed higher intracellular Cu uptake and their ecology seemed to be associated with low-nutrient environments. Thus the wall and external matrix, mainly characteristic of the mycobiont partner, cannot be ignored as the first site of interaction of metals with lichens. No common intracellular Cu concentration threshold was found for the physiological impacts observed in the different species. Most physiological effects of Cu uptake in sensitive lichens occurred for intracellular Cu below 200 μg/g dw whereas more tolerant species were able to cope with intracellular Cu at least 3 times higher. Cyanobacterial lichens showed to be more sensitive to Cu uptake than green-algal lichens. Within the Trebouxia lichens, different species showed different sensitivities to Cu uptake, suggesting that the mycobiont may change the microenvironment close to the photobiont partner providing different degrees of protection. Despite the fact that the photobiont is the productive partner, the metabolic activity of the mycobiont of lichen species adapted to environments rich in nutrients, showed to be more sensitive to Cu uptake than the photochemical performance of the photobiont.  相似文献   
46.
While it has been widely proven that many lichens are extremely freeze-tolerant in the dry state, little is known about how moist lichens respond to freezing under oxic and anoxic conditions. In circumpolar areas where lichens are an important component of boreal and Arctic ecosystems, winter climate is changing, leading to increased frequency of winter thaw and ground-icing events. It is imperative to elucidate in further detail how northern vegetation responds to being encapsulated in ice. A winter icing simulation experiment was therefore undertaken, encapsulating two reindeer lichens (Cladonia stellaris and Cladonia rangiferina) and two epiphytic lichens (Parmeliopsis ambigua and Melanohalea olivacea) in ice at temperatures just below freezing for a maximum period of 98 d. Photosynthetic and chlorophyll fluorescence rates decreased strongly, clearly suggesting that the algal partner of the lichens was dying. Low but detectable respiration rates indicate that the fungal partner maintained some physiological activity. Ethanol accumulated in the lichens during ice encapsulation as a result of anaerobic respiration. The algae probably were dying from a combination of depletion of carbon reserves and toxic levels of ethanol and other stress metabolites. This experiment shows that boreal and Arctic-alpine lichens are sensitive to a warmer and more fluctuating winter climate. Increasing frequency of winter icing events may therefore have extensive and hitherto unknown effects on lichen-dominated ecosystems, their herbivores and the indigenous peoples whose livelihoods largely depend on them.  相似文献   
47.
Markus Hauck 《Flora》2011,206(2):81-90
Epiphytic lichens are an important part of the vegetation of northern coniferous forests of Eurasia and North America. Much progress has been made during recent decades at disentangling relevant site factors, which control the diversity and distribution of epiphytic lichens in boreal and oroboreal forests. The present paper aims at summarizing the present state of knowledge. Relevant site factors include the microclimate, nutrient supply, structural diversity and, if applicable, air pollution. The continuity of site conditions decides over the presence of species with dispersal limitations. The effects of fire on epiphytic lichens are largely unstudied, although fire is an important ecological factor in boreal forests.  相似文献   
48.
O. L. Lange  H. Pfanz  E. Kilian  A. Meyer 《Planta》1990,182(3):467-472
Earlier experiments (T.D. Brock 1975, Planta124, 13–23) addressed the question whether the fungus of the lichen thallus might enable the algal component to function when moisture stress is such that the algal component would be unable to function under free-living conditions. It was concluded that the liberated phycobiont in ground lichen thalli could not photosynthesize at water potentials as low as those at which the same alga could when it was present within the thallus. However, our experience with lichen photosynthesis has not substantiated this finding. Using instrumentation developed since the mid-1970's to measure photosynthesis and control humidity, we repeated Brock's experiments. When applying “matric” water stress (equilibrium with air of constant relative humidity) we were unable to confirm the earlier results for three lichen species including one of the species,Letharia vulpina, had also been used by Brock. We found no difference between the effects of low water potential on intact lichens and their liberated algal components (ground thallus material and isolated algae) and no indication that the fungal component of the lichen symbiosis protects the phycobiont from the adverse effects of desiccation once equilibrium conditions are reached. The photosynthetic apparatus of the phycobiont alone proved to be highly adapted to water stress as it possesses not only the capability of functioning under extremely low degrees of hydration but also of becoming reactivated solely by water vapor uptake.  相似文献   
49.
The characteristics of gas exchange and carbon isotope discrimination were determined for a number of lichen species, representing contrasting associations between fungal (mycobiont) and photosynthetic (photobiont) organism. These parameters were evaluated with regard to the occurrence of any CO2-concentrating mechanism (CCM) expressed specifically by the green algal (phycobiont) or cyanobacterial (cyanobiont) partner. Carbon isotope discrimination () fell into three categories. The highest , found in lichens comprising a phycobiont plus cyanobacteria limited to pockets in the thallus (known as cephalodia), ranged from 24 to 28, equivalent to a carbon isotope ratio (13C) of around -32 to-36 vs. Pee Dee Belemnite (PDB) standard. Further evidence was consistent with CO2 supply to the carboxylating system entirely mediated by diffusion rather than a CCM, in that thallus CO2 compensation point and online instantaneous were also high, in the range normally associated with C3 higher plants. For lichens consisting of phycobiont or cyanobiont alone, organic material formed two distinct ranges around 15 (equivalent to a 13C of -23%.). Thallus compensation point and instantaneous were lower in the cyanobiont group, which also showed higher maximum rates of net photosynthesis, whether expressed on the basis of thallus dry weight, chlorophyll content or area. These data provide additional evidence for the activity of a CCM in cyanobiont lichens, which only show photosynthetic activity when reactivated with liquid water. Rates of net CO2 uptake were lower in both phycobiont associations, but were relatively constant across a wide working range of thallus water contents, usually in parallel with on-line . The phycobiont response was consistent whether photosynthesis had been reactivated with liquid water or water vapour. The effect of diffusion limitation could generally be seen with a 3–4 decrease in instantaneous at the highest water contents. The expression of a CCM in phycobiont algae, although reduced compared with that in cyanobacteria, has already been related to the occurrence of pyrenoids in chloroplasts. In view of the inherent requirement of cyanobacteria for some form of CCM, and the smaller pools of dissolved inorganic carbon (DIC = CO2 + HCO inf3 su– + CO inf3 su2– ) associated with phycobiont lichens, it appears that characteristics provide a good measure of the magnitude of any CCM, albeit tempered by diffusion limitation at the highest thallus water contents.Abbreviations ANOVA analysis of variance - CCM CO2-concentrating mechanism - cyanobiont cyanobacterium - DIC CO2 + HCO inf3 su– + CO inf3 su2– (dissolved inorganic carbon) - photobiont photosynthetic organism present in the association - phycobiont green alga - phycobiont + cephalodia green algae + cyanobacteria in cephalodia - Pmax maximum photosynthetic rate - PPFD photosynthetic photon flux density, 400–700 nm - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - carbon isotope discrimination () - 13C carbon isotope ratio () We would like to thank Dr. Enrico Brugnoli (CNR, Porano, Italy) and E.C. Smith (University of Newcastle) for many helpful discussions. Dr. Kristin Palmqvist (Department of Plant Physiology, University of Umeå, Sweden) kindly provided the samples of Peltigera apthosa. In particularly, Cristina Máguas would like to thank to Prof. Fernando Catarino (University of Lisbon) for his support throughout this study. Cristina Máguas has been supported by JNICT-Science Programme studentship (BD/153/90-RN).  相似文献   
50.
M. Tretiach  A. Geletti 《Oecologia》1997,111(4):515-522
CO2 exchange of the endolithic lichen Verrucaria baldensis was measured in the laboratory under different conditions of water content, temperature, light, and CO2 concentration. The species had low CO2 exchange rates (maximum net photosynthesis: c. 0.45 μmol CO2 m−2 s−1; maximum dark respiration: c. 0.3 μmol CO2 m−2 s−1) and a very low light compensation point (7 μmol photons m−2 s−1 at 8°C). The net photosynthesis/respiration quotient reached a maximum at 9–15°C. Photosynthetic activity was affected only after very severe desiccation, when high resaturation respiratory rates were measured. Microclimatic data were recorded under different weather conditions in an abyss of the Trieste Karst (northeast Italy), where the species was particularly abundant. Low photosynthetically active radiation (normally below 40 μmol photons m−2 s−1), very high humidities (over 80%), and low, constant temperatures were measured. Thallus water contents sufficient for CO2 assimilation were often measured in the absence of condensation phenomena. Received: 22 September 1996 / Accepted: 26 April 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号