首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6332篇
  免费   462篇
  国内免费   446篇
  2024年   14篇
  2023年   91篇
  2022年   105篇
  2021年   154篇
  2020年   185篇
  2019年   233篇
  2018年   238篇
  2017年   177篇
  2016年   219篇
  2015年   226篇
  2014年   339篇
  2013年   482篇
  2012年   290篇
  2011年   336篇
  2010年   226篇
  2009年   243篇
  2008年   238篇
  2007年   371篇
  2006年   306篇
  2005年   299篇
  2004年   244篇
  2003年   212篇
  2002年   176篇
  2001年   148篇
  2000年   122篇
  1999年   117篇
  1998年   129篇
  1997年   97篇
  1996年   108篇
  1995年   105篇
  1994年   82篇
  1993年   65篇
  1992年   68篇
  1991年   56篇
  1990年   58篇
  1989年   52篇
  1988年   47篇
  1987年   42篇
  1986年   49篇
  1985年   74篇
  1984年   71篇
  1983年   57篇
  1982年   62篇
  1981年   59篇
  1980年   46篇
  1979年   38篇
  1978年   23篇
  1977年   21篇
  1975年   9篇
  1973年   11篇
排序方式: 共有7240条查询结果,搜索用时 296 毫秒
991.
Individuals with overweight and obesity are subject to enormous bias and discrimination across domains. This bias constitutes a considerable public health problem beyond the effects of excess weight on health. Unfortunately, the few interventions that have been implemented to reduce this bias have not been successful. Evidence that the presence of an animal makes individuals and settings appear more attractive, desirable, approachable, and relaxed, as well as happier and safer, suggests that dog ownership may be a simple way to reduce weight bias. Accordingly, we tested whether the presence of a dog can reduce weight bias in a sample of 314 online participants. Each participant was presented with a stimulus image representing one of three conditions (person with dog, person with plant, or person alone), and was then asked to rate the human model using three measures. Two sets of stimuli (featuring different models) were used to ensure that findings were not restricted to a particular model. Contrary to our predictions, we found no evidence that the presence of a dog affects endorsement of weight-related stereotypes, general evaluations, or desire for social distance. These findings contrast with a large body of literature showing that dogs enhance perceptions of a range of individuals and settings. The effect of dogs on perceptions may be restricted in the case of weight bias because of the pervasive, explicit, and severe nature of this bias. Dogs may have stronger effects on attitudes that are less openly endorsed. Promising avenues where dogs are very likely to influence attitudes include perceptions of individuals of different racial and ethnic backgrounds, gender identities, and even political parties.  相似文献   
992.
Cancer is one of the major causes of death globally. The current treatment options are insufficient, leading to unmet medical needs in cancer treatment. Off-target side effects, multidrug resistance, selective distribution to cancerous tissues, and cell membrane permeation of anti-cancer agents are critical problems to overcome. There is a method to solve these problems by using receptor-mediated endocytosis (RME). It is well known that proteins such as integrin, HER2, EGFR, or other cancer biomarkers are specifically overexpressed on the surface of target cancer cells. By taking advantage of such specific receptors, payloads can be transported into cells through endocytosis using a conjugate composed of the corresponding ligands connected to the payloads by an appropriate linker. After RME, the payloads released by endosomal escape into the cytoplasm can exhibit the cytotoxic activity against cancer cells. Cell-penetrating peptides (CPPs), tumor-homing peptides (THPs), and monoclonal antibodies (mAbs) are utilized as ligands in this system. Antibody drug conjugates (ADCs) based on RME have already been used to cure cancer. In addition to the canonical conjugate method, nanocarriers for spontaneous accumulation in cancer tissue due to enhanced permeability and retention (EPR) effect are extensively used. In this review, I introduce the possibilities and advantages of drug design and development based on RME for the treatment of cancer.  相似文献   
993.
Agriculture has new challenges against the climate change: the preservation of genetic resources and the rapid creation of new varieties better adapted to abiotic stress, specially salinity. In this context, the agronomic performance of 25 durum wheat (Triticum turgidum subsp. durum Desf.) genotypes (nineteen landraces and six improved varieties), cultivated in two semi-arid regions in the center area of Tunisia, were assessed. These sites (Echbika, 2.2?g?l?1; Barrouta, 4.2?g?l?1) differ by their degree of salinity of the water irrigation. The results showed that most of the agronomic traits (e.g. spike per meter square, thousand kernels weight and grain yield) were reduced by salinity. Durum wheat landraces, Mahmoudi and Hmira, and improved varieties, Maali and Om Rabia showed the widest adaptability to different quality of irrigation water. Genotypes including Jneh Kotifa and Arbi were estimated as stable genotypes under adverse conditions. Thereafter, salt-tolerant (Hmira and Jneh Khotifa) and the most cultivated high-yielding (Karim, Razzak and Khiar) genotypes were tested for their gynogenetic ability to obtain haploids and doubled haploid lines. Genotypes with good induction capacity had not necessarily a good capacity of regeneration of haploid plantlets. In our conditions, Hmira and Khiar exhibited the best gynogenetic ability (3.1% and 2.9% of haploid plantlets, respectively).  相似文献   
994.
Presently, commercialization of sodium‐ion batteries (SIBs) is still hindered by the relatively poor energy‐storage performance. In addition, low‐temperature (low‐T) Na storage is another principal concern for the wide application of SIBs. Unfortunately, the Na‐transfer kinetics is extremely sluggish at low‐T, as a result, there are few reports on low‐T SIBs. Here, an advanced low‐T sodium‐ion full battery (SIFB) assembled by an anode of 3D Se/graphene composite and a high‐voltage cathode (Na3V2(PO4)2O2F) is developed, exhibiting ultralong lifespan (over even 15 000 cycles, the capacity retention is still up to 86.3% at 1 A g?1), outstanding low‐T energy storage performance (e.g., all values of capacity retention are >75% after 1000 cycles at temperatures from 25 to ?25 °C at 0.4 A g?1), and high‐energy/power properties. Such ultralong lifespan signifies that the developed sodium‐ion full battery can be used for longer than 60 years, if batteries charge/discharge once a day and 80% capacity retention is the standard of battery life. As a result, the present study not only promotes the practicability and commercialization of SIBs but also points out the new developing directions of next‐generation energy storage for wider range applications.  相似文献   
995.
Lithium‐ion batteries (LIBs) are integral parts of modern technology, but can raise safety concerns because of their flammable organic electrolytes with low flash points. Aqueous electrolytes can be used in LIBs to overcome the safety issues that come with organic electrolytes while avoiding poor kinetics associated with solid state electrolytes. Despite advances in aqueous electrolytes, current collectors for aqueous battery systems have been neglected. Current collectors used in today's aqueous battery systems are usually metal‐based materials, which are heavy, expensive, bulky, and prone to corrosion after prolonged use. Here, a carbon nanotube (CNT)–cellulose nanofiber (CNF) all‐fiber composite is developed that takes advantage of the high conductivity of CNT while achieving high mechanical strength through the interaction between CNT and CNF. By optimizing the CNT/CNF weight ratio, this all‐fiber current collector can be made very thin while maintaining high conductivity (≈700 S cm?1) and strength (>60 MPa), making it an ideal replacement for heavy metal current collectors in aqueous battery systems.  相似文献   
996.
“The Same‐Acceptor‐Strategy” (SAS) adopts benzotriazole (BTA)‐based p‐type polymers paired with a new BTA based non‐fullerene acceptor BTA13 to minimize the trade‐off between the open‐circuit voltage (VOC) and short circuit current (JSC). The fluorination and sulfuration are introduced to lower the highest occupied molecular orbitals (HOMO) of the polymers. The fluorinated polymer of J52‐F shows the higher power conversion efficiency (PCE) of 8.36% than the analog polymer of J52, benefited from a good balance between an improved VOC of 1.18 V and a JSC of 11.55 mA cm?2. Further adding alkylthio groups on J52‐F, the resulted polymer, J52‐FS, exhibits the highest VOC of 1.24 V with a decreased energy loss of 0.48 eV, compared with 0.67 eV for J52 and 0.54 eV for J52‐F. However, J52‐FS shows an inferior PCE (3.84%) with a lower JSC of 6.74 mA cm?2, because the small ΔEHOMO between J52‐FS and BTA13 (0.02 eV) gives rise to the inefficient hole transfer and high charge recombination, as well as low carrier mobilities. The results of this study clearly demonstrate that the introduction of different atoms in p‐type polymers is effective to improve the SAS and realize the high (VOC) and PCE.  相似文献   
997.
The intrinsic polysulfides shuttle, resulting from not only concentration‐gradient diffusion but also slow conversion kinetics of polysulfides, bears the primary responsibility for the poor capacity and cycle stability of lithium–sulfur batteries (LSBs). Here, it is first presented that enriched edge sites derived from vertical standing and ultrathin 2D layered metal selenides (2DLMS) can simultaneously achieve the thermodynamic and kinetic regulation for polysulfides diffusion, which is systematically elucidated through theoretical calculation, electrochemical characterization, and spectroscopic/microscopic analysis. When employed to fabricate compact coating layer of separator, an ultrahigh capacity of 1338.7 mA h g?1 is delivered after 100 cycles at 0.2 C, which is the best among the reports. Over 1000 cycles, the cell still maintains the capacity of 546.8 mA h g?1 at 0.5 C. Moreover, the cell exhibits outstanding capacities of 1106.2 and 865.7 mA h g?1 after 100 cycles at stern temperature of 0 and ?25 °C. The superior low‐temperature performance is appealing for extended practical application of LSBs. Especially, in view of the economy, the 2DLMS is recycled as an anode of lithium‐ion and sodium‐ion batteries after finishing the test of LSBs. The low‐cost and scalable 2DLMS with enriched egde sites open a new avenue for the perfect regulation of the sulfur electrode.  相似文献   
998.
With the rapidly growing demand for low‐cost and safe energy storage, the advanced battery concepts have triggered strong interests beyond the state‐of‐the‐art Li‐ion batteries (LIBs). Herein, a novel hybrid Li/Na‐ion full battery (HLNIB) composed of the high‐energy and lithium‐free Na3V2(PO4)2O2F (NVPOF) cathode and commercial graphite anode mesophase carbon micro beads is for the first time designed. The assembled HLNIBs exhibit two high working voltage at about 4.05 and 3.69 V with a specific capacity of 112.7 mA h g?1. Its energy density can reach up to 328 W h kg?1 calculated from the total mass of both cathode and anode materials. Moreover, the HLNIBs show outstanding high‐rate capability, long‐term cycle life, and excellent low‐temperature performance. In addition, the reaction kinetics and Li/Na‐insertion/extraction mechanism into/out NVPOF is preliminarily investigated by the galvanostatic intermittent titration technique and ex situ X‐ray diffraction. This work provides a new and profound direction to develop advanced hybrid batteries.  相似文献   
999.
A terthieno[3,2‐b]thiophene ( 6T ) based fused‐ring low bandgap electron acceptor, 6TIC , is designed and synthesized for highly efficient nonfullerene solar cells. The chemical, optical, and physical properties, device characteristics, and film morphology of 6TIC are intensively studied. 6TIC shows a narrow bandgap with band edge reaching 905 nm due to the electron‐rich π‐conjugated 6T core and reduced resonance stabilization energy. The rigid, π‐conjugated 6T also offers lower reorganization energy to facilitate very low VOC loss in the 6TIC system. The analysis of film morphology shows that PTB7‐Th and 6TIC can form crystalline domains and a bicontinuous network. These domains are enlarged when thermal annealing is applied. Consequently, the device based on PTB7‐Th : 6TIC exhibits a high power conversion efficiency (PCE) of 11.07% with a high JSC > 20 mA cm?2 and a high VOC of 0.83 V with a relatively low VOC loss (≈0.55 V). Moreover, a semitransparent solar cell based on PTB7‐Th : 6TIC exhibits a relatively high PCE (7.62%). The device can have combined high PCE and high JSC is quite rare for organic solar cells.  相似文献   
1000.
Water regulation caused by enzymes, such as carbonic anhydrase (CA), changes the water status, making it difficult to diagnose water deficit using leaf water potential (ψL) or stomatal conductance (gs). Therefore, new methods for timely and accurately determining plant water status should be established. In this study, CA activity, ψL, leaf tensity (Td), photosynthetic characteristics and plant growth of Brassica napus L. seedlings under drought and subsequent rewatering were analysed. Results indicated that Td could reflect the plant water status better than ψL or gs and played an important role in the photosynthesis of B. napus. B. napus exhibited good restorability at the 40?g?L?1 polyethylene glycol level. The rewatering strategy for B. napus was excellent at 40?g?L?1 (?0.15?MPa) →20?g?L?1 (?0.11?MPa). Td could be used for the rapid determination of water requirement information in B. napus during winter drought period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号