首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2637篇
  免费   132篇
  国内免费   52篇
  2023年   64篇
  2022年   54篇
  2021年   88篇
  2020年   58篇
  2019年   75篇
  2018年   64篇
  2017年   65篇
  2016年   36篇
  2015年   67篇
  2014年   88篇
  2013年   125篇
  2012年   89篇
  2011年   86篇
  2010年   71篇
  2009年   100篇
  2008年   117篇
  2007年   126篇
  2006年   121篇
  2005年   84篇
  2004年   114篇
  2003年   86篇
  2002年   90篇
  2001年   64篇
  2000年   66篇
  1999年   63篇
  1998年   56篇
  1997年   48篇
  1996年   45篇
  1995年   58篇
  1994年   52篇
  1993年   44篇
  1992年   37篇
  1991年   49篇
  1990年   43篇
  1989年   48篇
  1988年   35篇
  1987年   24篇
  1986年   29篇
  1985年   22篇
  1984年   23篇
  1982年   22篇
  1981年   21篇
  1980年   14篇
  1979年   13篇
  1978年   17篇
  1977年   13篇
  1976年   9篇
  1973年   8篇
  1971年   8篇
  1970年   6篇
排序方式: 共有2821条查询结果,搜索用时 46 毫秒
61.
迷走神经背核的研究进展   总被引:10,自引:0,他引:10  
迷走神经背核(DMV)是一个重要的内脏运动核团和内脏感觉核团。DMV与中枢及外周存在广泛的纤维联系。DMV和孤束核、最后区一起构成了“迷走感觉运动中枢”。DMV存在神经-体液回路,使DMV神经元可以直接感受外周血及脑脊液中的信息。DMV含乙酰胆碱、儿茶酚胺、神经肽类等多种递质及相应受体。DMV参与中枢调节胃肠、心血管及内分泌等生理功能。  相似文献   
62.
Ceramide has been typically thought of as the membrane anchor for the carbohydrate in glycosphingolipids but many studies have suggested that it may cause apoptosis. Apoptosis or programmed cell death (PCD) is thought to be responsible for the death of one-half of neurons surviving the development of the nervous system. The potential involvement of the sphingomyelin-ceramide signaling process as an integral part of PCD was therefore examined in several neurotumour cell lines. We show that synthetic C2-ceramide (N-acetylsphingosine), a soluble ceramide analogue, can rapidly trigger PCD in these cells, characterized by: 1) classic DNA laddering on agarose gels; 2) DNA fragmentation as determined by Hoechst Dye; and 3) cell viability (mitochondrial function and intact nuclei) assays. We report that staurosporine can both activate PCD (by all three criteria above) in neurotumour cells and increase both the formation of ceramide and ceramide mass. Both ceramide formation and the induction of PCD were further enhanced by the co-addition of a ceramidase inhibitor oleoylethanolamine (25 µM). Staurosporine and oleoylethanolamine were similarly effective in inducing ceramide formation and PCD in immortalized hippocampal neurons (HN-2) and immortalized dorsal root ganglion cells (F-11). Our data suggests that formation of ceramide is a key event in the induction of PCD in neuronally derived neurotumour cells.Abbreviations PCD programmed cell death - PKC protein kinase C - HPTLC high-performance thin-layer chromatography - DETAPAC diethylenetriaminepentaacetic acid - DMEM Dubelco's modified Eagle's medium - FCS fetal calf serum - PBS phosphate-buffered saline - DAG diacylglycerol - DDI distilled-deionized - Cer ceramide - SM sphingomyelin Dedicated to Dr Sen-itiroh Hakomori in celebration of his 65th birthday.  相似文献   
63.
A group of serotonergic cells, located in the pedal ganglia ofHelix lucorum, modulates synaptic responses of neurons involved in withdrawal behavior. Extracellular or intracellular stimulation of these serotonergic cells leads to facilitation of spike responses to noxious stimuli in the putative command neurons for withdrawal behavior. Noxious tactile stimuli elicit an increase in background spiking frequency in the modulatory neurons and a corresponding increase in stimulus-evoked spike responses in withdrawal interneurons. The serotonergic neurons have processes in the neuropil of the parieto-visceral ganglia complex, consistent with their putative role in modulating the activity of giant parietal interneurons, which send processes to the same neuropil and to the pedal ganglia. The serotonergic cells respond to noxious tactile and chemical stimuli. Although the group as a whole respond to noxious stimuli applied to any part of the body, most cells respond more to ipsilateral than contralateral stimulation, and exhibit differences in receptive areas. Intracellular investigation revealed electrical coupling between serotonergic neurons which could underlie the recruitment of members of the group not responding to a given noxious stimulus.  相似文献   
64.
Octopod (Octo) is a mutation of the moth Manduca sexta, which transforms the first abdominal segment (A1) in the anterior direction. Mutant animals are characterized by the appearance of homeotic thoracic-like legs on A1. We exploited this mutation to determine what rules might be used in specifying the fates of sensory neurons located on the body surface of larval Manduca. Mechanical stimulation of homeotic leg sensilla did not cause reflexive movements of the homeotic legs, but elicited responses similar to those observed following stimulation of ventral A1 body wall hairs. Intracellular recordings demonstrated that several of the motoneurons in the A1 ganglion received inputs from the homeotic sensory hairs. The responses of these motoneurons to stimulation of homeotic sensilla resembled their responses to stimulation of ventral body wall sensilla. Cobalt fills revealed that the mutation transformed the segmental projection pattern of only the sensory neurons located on the ventral surface of A1, resulting in a greater number with intersegmental projection patterns typical of sensory neurons found on the thoracic body wall. Many of the sensory neurons on the homeotic legs had intersegmental projection patterns typical of abdominal sensory neurons: an anteriorly directed projection terminating in the third thoracic ganglion (T3). Once this projection reached T3, however, it mimicked the projections of the thoracic leg sensory neurons. These results demonstrate that the same rules are not used in the establishment of the intersegmental and leg-specific projection patterns. Segmental identity influences the intersegmental projection pattern of the sensory neurons of Manduca, whereas the leg-specific projections are consistent with a role for positional information in determining their pattern. © 1995 John Wiley & Sons, Inc.  相似文献   
65.
The ability of neurotrophin-4/5 (NT-4/5), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and nerve growth factor (NGF) to promote survival of postnatal rat vestibular ganglion neurons (VGNs) was examined in dissociated cell cultures. Of the four neurotrophins, NT-4/5 and BDNF were equally effective but more potent than NT-3 in promoting the survival of VGNs. In contrast, NGF showed no detectable effects. As expected, TrkB-IgG (a fusion protein of extracellular domain of TrkB and Fc domain of human immunoglobulin G) specifically inhibited the survival-promoting effects by NT-4/5 or BDNF and TrkC-IgG fusion protein completely blocked that of NT-3. Immunohistochemistry with TrkB, TrkA, and p75 antisera revealed that VGNs made TrkB and p75 proteins, but not TrkA protein. Ototoxic therapeutic drugs such as cisplatin and gentamicin often induce degeneration of hair cells and ganglion neurons in both auditory and vestibular systems that leads to impairment of hearing and balance. When cisplatin and gentamicin were added to the dissociated VGN culture in which the hair cells were absent, additional cell death of VGNs was induced, suggesting that the two ototoxins may have a direct neurotoxic effect on ganglion neurons in addition to their known toxicity on hair cells. However, if the cultures were co-treated with neurotrophins, NT-4/5, BDNF, and NT-3, but not NGF, prevented or reduced the neurotoxicity of the two ototoxins. Thus, the three neurotrophins are survival factors for VGNs and are implicated in the therapeutic prevention of VGN loss caused by injury and ototoxins. © 1995 John Wiley & Sons, Inc.  相似文献   
66.
We have analyzed the distribution of putative cholinergic neurons in whole-mount preparations of adult Drosophila melanogaster. Putative cholinergic neurons were visualized by X-gal staining of P-element transformed flies carrying a fusion gene consisting of 5′ flanking DNA from the choline acetyltransferase (ChAT) gene and a lacZ reporter gene. We have previously demonstrated that cryostat sections of transgenic flies carrying 7.4 kb of ChAT 5′ flanking DNA show reporter gene expression in a pattern essentially similar to the known distribution of ChAT protein. Whole-mount staining of these same flies by X-gal should thus represent the overall distribution of ChAT-positive neurons. Extensive staining was observed in the cephalic, thoracic, and stomodeal ganglia, primary sensory neurons in antenna, maxillary palps, labial palps, leg, wing, and male genitalia. Primary sensory neurons associated with photoreceptors and tactile receptors were not stained. We also examined the effects of partial deletions of the 7.4 kb fragment on reporter gene expression. Deletion of the 7.4 kb fragment to 1.2 kb resulted in a dramatic reduction of X-gal staining in the peripheral nervous system (PNS). This indicates that important regulatory elements for ChAT expression in the PNS exist in the distal region of the 7.4 kb fragment. The distal parts of the 7.4 kb fragment, when fused to a basal heterologous promoter, can independently confer gene expression in subsets of putative cholinergic neurons. With these constructs, however, strong ectopic expression was also observed in several non-neuronal tissues. © 1995 John Wiley & Sons, Inc.  相似文献   
67.
Calcium ions play critical roles in neuronal differentiation. We have recorded transient, repeated elevations of calcium in embryonic Xenopus spinal neurons over periods of 1 h in vitro and in vivo, confocally imaging fluo 3-loaded cells at 5 s intervals. Calcium spikes and calcium waves are found both in neurons in culture and in the intact spinal cord. Spikes rise rapidly to approximately 400% of baseline fluorescence and have a double exponential decay, whereas waves rise slowly to approximately 200% of baseline fluorescence and decay slowly as well. Imaging of fura 2-loaded neurons indicates that intracellular calcium increases from 50 to 500 nM during spikes. Both spikes and waves are abolished by removal of extracellular calcium. Developmentally, the incidence and frequency of spikes decrease, whereas the incidence and frequency of waves are constant. Spikes are generated by spontaneous calcium-dependent action potentials and also utilize intracellular calcium stores. Waves are produced by a mechanism that does not involve classic voltage-dependent calcium channels. Spikes are required for expression of the transmitter GABA and for potassium channel modulation. Waves in growth cones are likely to regulate neurite extension. The results demonstrate the roles of a novel signaling system in regulating neuronal plasticity, that operates on a time scale 104 times slower than that of action potentials. © 1995 John Wiley & Sons, Inc.  相似文献   
68.
Antibodies directed against different visual pigment opsins, and an antibody raised against the C terminal of the -subunit of retinal G protein (transducin) labelled cerebrospinal fluid-contacting cells located within the hypothalamus (postoptic commissural nucleus and ventral hypothalamic nucleus) of ammocoete lampreys (Petromyzon marinus). These antibodies also labelled photoreceptor cells within the retina and the pineal and parapineal organs, but no other areas of the brain. Despite considerable behavioural and physiological evidence for the existence of deep brain photoreceptors, numerous studies have failed to identify photoreceptor proteins within the basal brain. The results presented in this paper support our recent results in the lizard Anolis carolinensis, suggesting that a group of cerebrospinal fluid-contacting neurons within the vertebrate brain have a photosensory capacity. We speculate that these cells mediate extraocular and extrapineal photoreception in nonmammalian vertebrates.  相似文献   
69.
70.
Abstract: The relation between the availability of newly synthesized protein and lipid and the axonal transport of optically detectable organelles was examined in peripheral nerve preparations of amphibia (Rana catesbeiana and Xenopus laevis) in which intracellular traffic from the endo-plasmic reticulum to the Golgi complex was inhibited with brefeldin A (BFA). Accumulation of fast-transported radio-labeled protein or phospholipid proximal to a sciatic nerve ligature was monitored in vitro in preparations of dorsal root ganglia and sciatic nerve. Organelle transport was examined by computer-enhanced video microscopy of single myelinated axons. BFA reduced the amount of radiolabeled protein and lipid entering the fast-transport system of the axon without affecting either the synthesis or the transport rate of these molecules. The time course of the effect of BFA on axonal transport is consistent with an action at an early step in the intrasomal pathway, and with its action being related to the observed rapid (<1 h) disassembly of the Golgi complex. At a concentration of BFA that reduced fast-transported protein by >95%, no effect was observed on the flux or velocity of anterograde or retrograde organelle transport in axons for at least 20 h. Bidirectional axonal transport of organelles was similarly unaffected following suppression of protein synthesis by >99%. The findings suggest that the anterograde flux of transport organelles is not critically dependent on a supply of newly synthesized membrane precursors. The possibilities are considered that anterograde organelles normally arise from membrane components supplied from a post-Golgi storage pool, as well as from recycled retrograde organelles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号