首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   5篇
  国内免费   6篇
  2023年   2篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2015年   1篇
  2014年   3篇
  2013年   7篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   7篇
  2008年   5篇
  2007年   9篇
  2006年   7篇
  2005年   6篇
  2004年   7篇
  2003年   10篇
  2002年   9篇
  2001年   5篇
  2000年   2篇
  1999年   5篇
  1998年   5篇
  1997年   6篇
  1996年   1篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有151条查询结果,搜索用时 296 毫秒
81.
以纤毛婆婆纳(Veronica ciliateFisch.)无菌苗的顶芽作为外植体,在不同激素和浓度组合的MS培养基上进行愈伤组织诱导和快速繁殖的研究。结果表明,愈伤组织诱导的最佳培养基为:MS+6-BA 0.5 mg/L+NAA1.0 mg/L,诱导率达到95%;顶芽在MS+6-BA 0.5 mg/L+NAA 0.1 mg/L增殖培养基中增殖效果最佳,增殖系数高达5.4;丛生芽在1/2 MS+IBA 0.05 mg/L生根培养基生根效果最好,不仅根的质量好,而且生根率也达到95%;此再生苗的移栽成活率也最高,在适宜条件下可达40%。  相似文献   
82.
Peaches are highly perishable and deteriorate quickly at ambient temperature. Cold storage is commonly used to prevent fruit decay; however, it affects fruit quality causing physiological disorders collectively termed ‘chilling injury’ (CI). To prevent or ameliorate CI, heat treatment is often applied prior to cold storage. In the present work, metabolic profiling was performed to determine the metabolic dynamics associated with the induction of acquired CI tolerance in response to heat shock. ‘Dixiland’ peach fruits exposed to 39 °C, cold stored, or after a combined treatment of heat and cold, were compared with fruits ripening at 20 °C. Dramatic changes in the levels of compatible solutes such as galactinol and raffinose were observed, while amino acid precursors of the phenylpropanoid pathway were also modified due to the stress treatments, as was the polyamine putrescine. The observed responses towards temperature stress in peaches are composed of both common and specific response mechanisms to heat and cold, but also of more general adaptive responses that confer strategic advantages in adverse conditions such as biotic stresses. The identification of such key metabolites, which prime the fruit to cope with different stress situations, will likely greatly accelerate the design and the improvement of plant breeding programs.  相似文献   
83.
From the aerial parts of Veronica turrilliana two phenylethanoid glycosides, turrilliosides A and B and a steroidal saponin, turrillianoside were isolated and their structures elucidated as beta-(3,4-dihydroxyphenyl)ethyl-4-O-E-caffeoyl-O-[beta-glucopyranosyl-(1-->4)-alpha-rhamnopyranosyl-(1-->6)]-beta-glucopyranoside, beta-(3,4-dihydroxyphenyl)ethyl-4-O-E-caffeoyl-[6-O-E-feruloyl-beta-glucopyranosyl-(1-->4)-alpha-rhamnopyranosyl-(1-->6)]-beta-glucopyranoside and (23S,25S)-12beta,23-dihydroxyspirost-5-en-3beta-yl O-alpha-rhamnopyranosyl-(1-->4)-beta-glucopyranoside, respectively. Furthermore, eight known glucosides are reported namely, catalpol, catalposide, verproside, amphicoside, isovanilloylcatalpol, aucubin, arbutin, and 6-O-E-caffeoylarbutin, the latter two for the first time in the genus Veronica. The two phenylethanoid glycosides were found to be potent DPPH radical scavengers. All of the tested compounds were inactive against the representative species of fungi and bacteria.  相似文献   
84.
85.
The antifungal properties of isothiocyanates released from the hydrolysis of the glucosinolate sinigrin were assessed on an Armillaria mellea strain in Petri dishes. The fumigation with sinigrin at 100 µM showed a fungicidal effect, while lower rates determined a temporary fungistatic effect. The application of increasing rates of solid and liquid biofumigant formulations on A. mellea inoculated potted peach plants showed an increase of soil nitrate concentration, basal respiration, microbial biomass, leaf nitrogen and chlorophyll concentration. These effects indicated a stimulating effect of Brassicaceae derivatives on soil biological activity and plant growth. The application of a rate of meal higher than 6.42 g kg?1 soil caused a stunted growth and the death of some plants showing a clear phytotoxic effect of the treatments. The inhibition of A. mellea growth observed in in vitro trials was not evidenced in in vivo experiments due to the lack of infection symptoms in experimentally inoculated potted trees.  相似文献   
86.
As the preferred nitrogen (N) source, ammonium (NH4+ ) contributes to plant growth and development and fruit quality. In plants, NH4+ uptake is facilitated by a family of NH4+ transporters (AMT). However, the molecular mechanisms and functional characteristics of the AMT genes in peach have not been mentioned yet. In this present study, excess NH4+ stress severely hindered shoot growth and root elongation, accompanied with reduced mineral accumulation, decreased leaf chlorophyll concentration, and stunned photosynthetic performance. In addition, we identified 14 putative AMT genes in peach (PpeAMT). Expression analysis showed that PpeAMT genes were differently expressed in peach leaves, stems and roots, and were distinctly regulated by external NH4+ supplies. Putative cis-elements involved in abiotic stress adaption, Ca2+ response, light and circadian rhythms regulation, and seed development were observed in the promoters of the PpeAMT family genes. Phosphorylation analysis of residues within the C-terminal of PpeAMT proteins revealed many conserved phosphorylation residues in both the AMT1 and AMT2 subfamily members, which could potentially play roles in controlling the NH4+ transport activities. This study provides gene resources to study the biological function of AMT proteins in peach, and reveals molecular basis for NH4+ uptake and N nutrition mechanisms of fruit trees.  相似文献   
87.
以硬肉桃新品种‘双久红’果实为试材,以常规优良品种‘川中岛白桃’为对照,分别研究了成熟前20d和成熟后20d内两品种果实中钙含量和Ca^2+-ATP酶活性变化以及它们与果肉硬度关系的结果表明:‘双久红’果实的总钙和Ca^2+含量从成熟前15d开始极显著高于同期‘川中岛白桃’的,两者与果实硬度变化呈极显著相关(P〈0.01),随着果实的成熟两者均呈下降趋势,Ca^2+-ATP酶的调控能力也逐渐减弱,但‘双久红’果实中的Ca^2+-ATP酶活性比‘川中岛白桃’高一些。  相似文献   
88.
Phloem loading in peach: Symplastic or apoplastic?   总被引:2,自引:0,他引:2  
Sorbitol and sucrose are the two main soluble carbohydrates in mature peach leaves. Both are translocated in the phloem, in peach as in other rosaceous trees. The respective role of these two soluble carbohydrates in the leaf carbon budget, and their phloem loading pathway, remain poorly documented. Though many studies have been carried out on the compartmentation and export of sucrose in sucrose-transporting species, far less is known about sorbitol in species transporting both sucrose and sorbitol. Sorbitol and sucrose concentrations were measured in several tissues and in sap, in 2-month-old peach (Prunus persica L. Batsch) seedlings, i.e. leaf blade, leaf main vein, petiole, xylem sap collected using a pressure bomb, and phloem sap collected by aphid stylets. The sorbitol to sucrose molar ratio depended on the tissue or sap, the highest value (about 7) found in the leaf main vein. Sorbitol concentration in the phloem sap was about 560 mM, whereas that of sucrose was about 140 mM. The lowest sorbitol and sucrose concentrations were observed in xylem sap collected from the shoot. The volume of the leaf apoplast, estimated by infiltration with 3H-inulin, represented about 17% of the leaf blade water content. This volume was used to calculate a global intracellular concentration for each carbohydrate in the leaf blade. Following these simplifying assumptions, the calculated concentration gradient between the leaf's intracellular compartment and phloem sap is nil for sorbitol and could thus allow for the symplastic loading of the phloem of this alditol. However, infiltration of 14C-labelled source leaves with 2 mMp-chloromercuribenzenesulfonic acid (PC-MBS), a potent inhibitor of the sucrose carrier responsible for phloem loading in sucrose-transporting plants, had a significant effect on the exudation of both labelled sucrose and sorbitol from the phloem. Therefore, in peach, which is a putative symplastic loader according to minor vein anatomy and sorbitol concentration gradients, apoplastic loading may predominate.  相似文献   
89.
90.
The forest under-storey herbs Anemone nemorosa, Lamiastrum galeobdolon and Veronica montana are generally considered indicator species of old, broadleaved woodland sites where the soil fertility is often low. In a glasshouse bioassay, however, all three species not only showed large positive growth responses to supplied P concentrations (0–10mgL –1) solutions, but also tolerated high P concentrations (20–40mgL –1), well above those normally found in their natural habitat. Plants responded by raising the concentrations of P in their shoot and root tissues and increasing their biomass, resulting in an increased P uptake. A shade-tolerant competitor species, Urtica dioica, also grew vigorously across the full range of P concentrations, restricting the growth of the woodland species. This emphasises the difficulty of establishing semi-natural woodland vegetation in the presence of competitor species, for example in situations where new woodlands are planted on fertile ex-agricultural soils containing large residual concentrations of P. The influence of soil pH on the growth and nutrient relations of A. nemorosa, L. galeobdolon, V. montana, Poa trivialisandU. dioicawas determined in a separate experiment using an ex-arable soil as the growing medium with pH levels adjusted from 7.4 to 5.8 and 4.3 respectively. Acidifying the soil enhanced growth, but reduced the concentrations of N, P and K in the leaves of all three woodland species, probably due to dilution of these minerals in the increased dry matter production. The competitor species (P. trivialis and U. dioica) responded in similar manner to the woodland indicator species. These results suggest that manipulating soil pH as a means of facilitating the establishment of woodland indicator species in new farm woods is unlikely, in the short term, to be effective where competitor species are present.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号