首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1956篇
  免费   161篇
  国内免费   86篇
  2024年   6篇
  2023年   43篇
  2022年   29篇
  2021年   78篇
  2020年   113篇
  2019年   128篇
  2018年   105篇
  2017年   87篇
  2016年   76篇
  2015年   70篇
  2014年   127篇
  2013年   208篇
  2012年   96篇
  2011年   111篇
  2010年   83篇
  2009年   111篇
  2008年   126篇
  2007年   107篇
  2006年   97篇
  2005年   92篇
  2004年   59篇
  2003年   37篇
  2002年   62篇
  2001年   30篇
  2000年   14篇
  1999年   15篇
  1998年   12篇
  1997年   14篇
  1996年   7篇
  1995年   6篇
  1994年   6篇
  1993年   4篇
  1992年   3篇
  1991年   9篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   5篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1950年   1篇
排序方式: 共有2203条查询结果,搜索用时 328 毫秒
11.
A number of different methods, involving direct DNA delivery are now available for plant transformation. Here we review the most recently developed technique which involves the mixing of silicon carbide whiskers with plant cells and plasmid DNA. Fertile transgenic plants have now been produced using whisker-mediated transformation, and this method can now be considered as a simple, inexpensive alternative for plant transformation. A brief review on transformation of animal cells andChlamydomonas using whiskers technology is also included.  相似文献   
12.
Electroporation was used for the delivery and subsequent expression of GUS and anthocyanin reporter genes into intact maize immature embryos. The optimal conditions consisted of culturing immature embryos for 4 days on N6 1-100-25-Ag medium prior to electroporation (375 V/cm; 960 µF capacitance) in EPR buffer containing DNA and 0.07 M sodium glutamate at room temperature (22°C) after a 10 min heat shock at 37°C. Under these conditions, over 40 spots of GUS transient activity were observed per immature embryo. Transient gene expression after electroporation was further demonstrated using an anthocyanin construct, which is specific for expression in plant cells.  相似文献   
13.
In recent years, drug manufacturers and researchers have begun to consider the nanobiotechnology approach to improve the drug delivery system for tumour and cancer diseases. In this article, we review current strategies to improve tumour and cancer drug delivery, which mainly focuses on sustaining biocompatibility, biodistribution, and active targeting. The conventional therapy using cornerstone drugs such as fludarabine, cisplatin etoposide, and paclitaxel has its own challenges especially not being able to discriminate between tumour versus normal cells which eventually led to toxicity and side effects in the patients. In contrast to the conventional approach, nanoparticle-based drug delivery provides target-specific delivery and controlled release of the drug, which provides a better therapeutic window for treatment options by focusing on the eradication of diseased cells via active targeting and sparing normal cells via passive targeting. Additionally, treatment of tumours associated with the brain is hampered by the impermeability of the blood–brain barriers to the drugs, which eventually led to poor survival in the patients. Nanoparticle-based therapy offers superior delivery of drugs to the target by breaching the blood–brain barriers. Herein, we provide an overview of the properties of nanoparticles that are crucial for nanotechnology applications. We address the potential future applications of nanobiotechnology targeting specific or desired areas. In particular, the use of nanomaterials, biostructures, and drug delivery methods for the targeted treatment of tumours and cancer are explored.  相似文献   
14.
BackgroundIncreased incidence of antibiotic-resistant species calls for development of new types of nano-medicine that can be used for healing of bacteria-caused wounds, such as diabetic foot ulcer. As diabetic patients have inefficient defense mechanism against reactive oxygen species (ROS) produced in our body as a by-product of oxygen reduction, the process of wound healing takes longer epithelialisation period. Ceria nanoparticles (CNPs) are well-known for their antibacterial and ROS-scavenging nature. Yet till now no significant effort has been made to conjugate ceria nanoparticles with drugs to treat diabetic wounds.MethodsIn this experiment, CNPs were synthesized in-house and clindamycin hydrochloride was loaded onto it by physical adsorption method for reactive oxygen species responsive drug delivery. Various physico-chemical characterisations such as Transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Energy dispersive X-ray, Thermogravimetric study etc. were performed to affirm the formation of both nanoceria along with drug encapsulated nanoceria.ResultsBoth of these as-prepared formulations inhibited the growth of Gram-positive as well as Gram-negative bacteria confirmed by Disk diffusion study; exhibiting their antibacterial effect. In-vitro drug release study was carried out in physiological environment both in absence and presence of hydrogen peroxide solution to test the reactive ROS-responsiveness of the drug loaded nanocomposites. It also exhibited faster wound healing in diabetes-induced rats. Therefore, it could successfully lower the amount of serum glucose level, inflammation cytokines, hepatotoxic and oxidative stress markers in diabetic rats as confirmed by various ex vivo tests conducted.ConclusionThus, drug loaded ceria nanoparticles have the potential to heal diabetic wounds successfully and can be considered to be useful for the fabrication of appropriate medicated suppositories beneficial for diabetic foot ulcer treatment in future.  相似文献   
15.
《IRBM》2023,44(1):100728
Inner ear disorders' treatment remains challenging due to anatomical barriers. Robotic assistance seems to be a promising approach to enhance inner ear treatments and, more particularly, lead to effective targeted drug delivery into the human cochlea. In this paper we present a combination of a micro-macro system that was designed and realized in order to efficiently control the navigation of magnetic nanoparticles in an open-loop scheme throughout the cochlea, considering that the magnetic particles cannot be located in real time.In order to respect the anatomical constraints, we established the characteristics that the new platform must present then proceeded to the design of the latter. The developed system is composed of a magnetic actuator that aims to guide nanoparticles into the cochlea. Mounted on a robotic manipulator, it ensures its positioning around the patient's head. The magnetic device integrates four parallelepiped-rectangle permanent magnets. Their arrangement in space, position and orientation, allows the creation of an area of convergence of magnetic forces where nanoparticles can be pushed/pulled to. To ensure the reachability of the desired orientations and positions, a 3 DOF robot based on a Remote Centre of Motion (RCM) mechanism was developed. It features three concurrent rotational joints that generate a spherical workspace around the head. The control of the latter is based on kinematic models.A prototype of this platform was realized to validate the actuation process. Both magnetic actuator and robotic manipulator were realized using an additive manufacturing approach. We also designed a virtual human head with a life-size cochlea inside. A laser was mounted on the end effector to track the positioning of the actuator. This permitted to experimentally prove the capacity of the robotic system to reach the desired positions and orientations in accordance with the medical needs.This promising robotic approach, makes it possible to overcome anatomical barriers and steer magnetic nanoparticles to a targeted location in the inner ear and, more precisely, inside the cochlea.  相似文献   
16.
There is an unmet need for delivery platforms that realize the full potential of next-generation nucleic acid therapeutics. The in vivo usefulness of current delivery systems is limited by numerous weaknesses, including poor targeting specificity, inefficient access to target cell cytoplasm, immune activation, off-target effects, small therapeutic windows, limited genetic encoding and cargo capacity, and manufacturing challenges. Here we characterize the safety and efficacy of a delivery platform comprising engineered live, tissue-targeting, non-pathogenic bacteria (Escherichia coli SVC1) for intracellular cargo delivery. SVC1 bacteria are engineered to specifically bind to epithelial cells via a surface-expressed targeting ligand, to allow escape of their cargo from the phagosome, and to have minimal immunogenicity. We describe SVC1's ability to deliver short hairpin RNA (shRNA), localized SVC1 administration to various tissues, and its minimal immunogenicity. To validate the therapeutic potential of SVC1, we used it to deliver influenza-targeting antiviral shRNAs to respiratory tissues in vivo. These data are the first to establish the safety and efficacy of this bacteria-based delivery platform for use in multiple tissue types and as an antiviral in the mammalian respiratory tract. We expect that this optimized delivery platform will enable a variety of advanced therapeutic approaches.  相似文献   
17.
Human and murine blood cells treated with ZnCl2 and bis(sulfosuccinimidyl)suberate (BS3) (a cross linking agent) undergo band 3 clustering and binding of hemoglobin to red blood cell membrane proteins. These clusters induce autologous IgG binding and complement fixation, thus favouring the phagocytosis of ZnCl2/BS3 treated cells by macrophages. The extension of red blood cell opsonization can be easily modulated by changing the ZnCl2 concentration in the 0.1–1.0 mM range thus providing an effective way to affect blood cell recognition by macrophages. In fact, murine erythrocytes treated with increasing ZnCl2 concentrations have proportionally reduced survivals when reinjected into the animal. Furthermore, the organ sequestration of ZnCl2/BS3 treated cells strongly resembles the typical distribution of the senescent cells. Since the ZnCl2/BS3 treatment can also be performed on red blood cells loaded with drugs or other substances, this procedure is an effective drug-targeting system to be used for the delivery of molecules to peritoneal, liver and spleen macrophages.  相似文献   
18.
Since its development in the mid-1980s, microprojectile bombardment has been widely employed as a method for direct gene transfer into a wide range of plants, including the previously difficult-to-transform monocotyledonous species. Although the numerous instruments available for microprojectile-mediated gene delivery and their applications have been widely discussed, less attention has been paid to the critical factors which affect the efficiency of this method of gene delivery. In this review we do not wish to describe the array of devices used for microprojectile delivery or their uses which have already been definitively described, but instead wish to report on research developments investigating the factors which affect microprojectile-mediated transformation of plants.  相似文献   
19.
A complete synthesis of 1-O-hexadecyl-2-O-N-(heptadec-8-cis-enyl)carbamyl-sn-glycero-3-Phosphocholine, a novel analog of phosphatidylcholine, has been described. Each step is simple to perform and gives the desired products in high yield. Also, some of the intermediates formed during the synthesis have been efficiently utilized to prepare 1-O-hexadecyl-2-O-oleyl-sn-glycero-3-phosphocholine, 1-O-hexadecyl-2-oleoyl-sn-glycero-3-phosphochloine and 3-O-hexadecyl-2-oeloyl-sn-glycero-1-phosphocholine. These phosphatidylcholine (PC) analogs are useful for studying the possible role of phospholipases in the capture and lyses of liposomes in vivo.  相似文献   
20.
Yasui  T.  Takasugi  N. 《Cell and tissue research》1977,179(4):475-482
Cell and Tissue Research - Ovary-independent (estrogen-independent) irreversible proliferation and cornification of the vaginal epithelium in ovariectomized mice caused by neonatal injections of 20...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号