首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   43篇
  2024年   1篇
  2023年   8篇
  2022年   8篇
  2021年   5篇
  2020年   8篇
  2019年   6篇
  2018年   8篇
  2017年   14篇
  2016年   5篇
  2015年   7篇
  2014年   9篇
  2013年   13篇
  2012年   8篇
  2011年   13篇
  2010年   6篇
  2009年   7篇
  2008年   10篇
  2007年   7篇
  2006年   9篇
  2005年   5篇
  2004年   6篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   5篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   5篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   4篇
排序方式: 共有206条查询结果,搜索用时 140 毫秒
101.
Five food-deprived rhesus monkeys were exposed to 225-MHz continuous-wave, and 1.3-GHz, and 5.8-GHz pulsed radiation to determine the minimal power densities affecting performance. The monkeys were trained to press a lever (observing-response) thereby producing signals that indicated availability of food. In the presence of the aperiodically appearing food signals, a detection response on a different lever was reinforced by a food pellet. Continuous, stable responding during 60-min sessions developed and was followed by repeated exposures to radiofrequency radiation. The subjects, restrained in a Styrofoam chair, were exposed to free-field radiation while performing the task. Colonic temperature was simultaneously obtained. Observing-response performance was impaired at increasingly higher power densities as frequency increased from the near-resonance 225 MHz to the above-resonance 5.8 GHz. The threshold power density of disrupted response rate at 225 MHz was 8.1 mW/cm2; at 1.3 GHz it was 57 mW/cm2, and at 5.8 GHz it was 140 mW/cm2. These power densities were associated with reliable increases in colonic temperatures above sham-exposure levels. The mean increase was typically in the range of 1°C, and response-rate changes were not observed in the absence of concomitant temperature increases. In these experiments increase of colonic temperature was a much better predictor of behavioral disruption than was either the power density of the incident field or estimates of whole-body-averaged rates of energy absorption.  相似文献   
102.
103.
104.
This paper presents calculations for the electric field and absorbed power density distribution in chick brain tissue inside a test tube, using an off-center spherical model. It is shown that the off-center spherical model overcomes many of the limitations of the concentric spherical model, and permits a more realistic modeling of the brain tissue as it sits in the bottom of the test tube surrounded by buffer solution. The effect of the unequal amount of buffer solution above the upper and below the lower surfaces of the brain is analyzed. The field distribution is obtained in terms of a rapidly converging series of zonal harmonics. A method that permits the expansion of spherical harmonics about an off-center origin in terms of spherical harmonics at the origin is developed to calculate in closed form the electric field distribution. Numerical results are presented for the absorbed power density distribution at a carrier frequency of 147 MHz. It is shown that the absorbed power density increases toward the bottom of the brain surface. Scaling relations are developed by keeping the electric field intensity in the brain tissue the same at two different frequencies. Scaling relations inside, as well as outside, the brain surface are given. The scaling relation distribution is calculated as a function of position, and compared to the scaling relations obtained in the concentric spherical model. It is shown that the off-center spherical model yields scaling ratios in the brain tissue that lie between the extreme values predicted by the concentric and isolated spherical models.  相似文献   
105.
Specific absorption rate (SAR) was measured in models of the human head exposed to hand-held portable radios ("transceivers") transmitting at frequencies in the 800-MHz band. An isotropic implantable electric-field probe was used to measure internal fields induced in the head models, and SARs were determined by calculation. As well as determining representative values and distributions for SARs under various conditions, it was shown that antenna type and orientation with respect to the head are important factors affecting energy absorption.  相似文献   
106.
Crawford TEM cells are often used to expose cell cultures or small animals in order to study the effects caused by high-frequency fields. They are self-contained, easy-to-use setups that provide a rather homogeneous field distribution in a large area around its center, corresponding approximately to far-field conditions. However, a number of conditions must be met if such TEM cells are intended to be used for in vitro experiments. For instance, poor interaction with the incident field must be maintained to avoid significant field disturbances in the TEM cell. This is best achieved with E-polarization, i.e., when the E-field vector is normal to the investigated cell layer lining the bottom of a synthetic Petri dish. In addition, E-polarization provides the most homogeneous field distribution of all polarizations within the entire layer of cells. In this paper, we present a detailed dosimetric assessment for 60 and 100 mm Petri dishes as well as for a 48-well titer plate at 835 MHz. The dosimetry was performed by using numerical computations. The modeling and the simplifications are validated by a second numerical technique and by experimental measurements. For thin liquid layers, an approximation formula is provided with which the induced field strength for many other experiments conducted in Petri dishes can be assessed reliably. © 1996 Wiley-Liss, Inc.  相似文献   
107.
The objective of the current work was to simulate radiofrequency ablation (RFA) with theoretical and realistic computational models, which correspond to single-compartment models and clinical scenarios. A 3D model in a cubic region of 12 cm edge was studied representing either a homogeneous model or real clinical scenarios in three human tissues, i.e., liver, lung and kidney. An active electrode was placed at the center of the model. Various tumor sizes (1–3 cm) and source voltages (10–30 V) were investigated for the second case of a two-compartment model. In the case of a 3-cm tumor in diameter, the electrical and thermal problems (at steady state) were solved to calculate the temperature distribution within the tumor and tissue. Lesion volume was quantified using the Arrhenius equation and the isothermals of 50 and 60 °C. The physical properties of all materials were constant during the simulations, i.e., no changes with temperature were considered. It was found that tumor conductivity was low to achieve significant damage in the tumor; in all clinical scenarios, saline-enhanced RFA was necessary and led to a more efficient tumor destruction. It was also shown that highly perfused tissues, such as liver and kidney, block the energy deposition within them, in contrast to lung, and, thus, require a further saline enhancement. Finally, the effect of perfusion on lesion size was studied, and it was concluded that tumor perfusion was more significant than surrounding tissue perfusion.  相似文献   
108.
109.
110.
Human exposure to background radiofrequency electromagnetic fields (RF‐EMF) has been increasing with the introduction of new technologies. There is a definite need for the quantification of RF‐EMF exposure but a robust exposure assessment is not yet possible, mainly due to the lack of a fast and efficient measurement procedure. In this article, a new procedure is proposed for accurately mapping the exposure to base station radiation in an outdoor environment based on surrogate modeling and sequential design, an entirely new approach in the domain of dosimetry for human RF exposure. We tested our procedure in an urban area of about 0.04 km2 for Global System for Mobile Communications (GSM) technology at 900 MHz (GSM900) using a personal exposimeter. Fifty measurement locations were sufficient to obtain a coarse street exposure map, locating regions of high and low exposure; 70 measurement locations were sufficient to characterize the electric field distribution in the area and build an accurate predictive interpolation model. Hence, accurate GSM900 downlink outdoor exposure maps (for use in, e.g., governmental risk communication and epidemiological studies) are developed by combining the proven efficiency of sequential design with the speed of exposimeter measurements and their ease of handling. Bioelectromagnetics 34:300–311, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号