首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   5篇
  国内免费   3篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   6篇
  2018年   5篇
  2017年   1篇
  2016年   5篇
  2015年   6篇
  2014年   10篇
  2013年   6篇
  2012年   4篇
  2011年   6篇
  2010年   1篇
  2009年   9篇
  2008年   10篇
  2007年   9篇
  2006年   10篇
  2005年   7篇
  2004年   8篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有115条查询结果,搜索用时 17 毫秒
81.
Induction of Human UDP-glucuronosyltransferase 1A1 by Cortisol-GR   总被引:1,自引:0,他引:1  
During the course of the study of UGT1A1 induction by bilirubin, we could not detect the induction of the reporter gene (−3174/+14) of human UGT1A1 in HepG2 by bilirubin (Mol. Biol. Rep. 31: 151–158 (2004)). In this report, we show the finding of the induction of the reporter gene of UGT1A1 by cortisol at 1 μM, a major natural cortico-steroid, with human glucocorticoid receptor (GR). RU486 of a typical GR antagonist at 10 μM inhibited the induction by cortisol from 5.9- to 1.8-fold. This result indicates that the induction by cortisol-GR is dependence on ligand-binding. This induction is caused by the UGT reporter gene itself, from the results of noinduction with control vector pGL2 (equal to pGV-C) in the presence of cortisol-GR. We confirmed that the induction of the reporter gene by cortisol is dependent on the position of proximal element (−97/−53) of UGT1A1. From this result, we concluded that the increase of corticosteroid in neonates must induce the elevation of UGT1A1 after birth and prevent jaundice. With the study of induction by corisol, we studied the influence of co-expression of PXR (pregnenolone xenobiotic receptor) with the UGT1A1 reporter gene and we could not find the induction of UGT1A1 expression in the presence of dexamethasone, rifampicin, or pregnenolone 16α-carbonitrile of the PXR ligands. These results suggest that the induction of UGT1A1 expression by GR is not mediated by PXR, unlike the induction of CYP3A4 through PXR.  相似文献   
82.
Among more than 100 rice uridine diphosphate glycosyltransferases (UGTs), OsUGT-3 was selected as a candidate for producing flavonoid O-diglycosyltransferases based on phylogenetic analysis and molecular docking. This gene was functionally expressed in Escherichia coli. Analysis of kaempferol, luteolin, quercetin, and tricin reaction products using liquid chromatography-mass spectrometry revealed that these were diglucosylated. The glucosylation positions of kaempferol, which was the best substrate, were determined to be the 3- and 7-hydroxyl groups. This is the first flavonoid O-diglucosyltransferase described from rice.  相似文献   
83.
Testosterone and epitestosterone are secreted mainly as glucuronide metabolites and the urinary ratio of testosterone glucuronide to epitestosterone glucuronide, often called T/E, serves as a marker for possible anabolic steroids abuse by athletes. UDP-glucuronosyltransferase (UGT) 2B17 is the most important catalyst of testosterone glucuronidation. The T/E might be affected by drugs that interact with UGT2B17, or other enzymes that contribute to testosterone glucuronidation. Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used by sportsmen and we have examined the effect of two NSAIDs, diclofenac and ibuprofen, on testosterone and epitestosterone glucuronidation in human liver microsomes. In parallel, we have studied the inhibitory effect of these NSAIDs on recombinant UGT2B17 and UGT2B15, as well as other human hepatic UGTs that revealed low but detectable testosterone glucuronidation activity, namely UGT1A3, UGT1A4, UGT1A9 and UGT2B7. Both diclofenac and ibuprofen inhibited testosterone glucuronidation in microsomes, as well as UGT2B15 and UGT2B17. Interestingly, UGT2B15 was more sensitive than UGT2B17 to the two drugs, particularly to ibuprofen. Human liver microsomes lacking functional UGT2B17 exhibited significantly higher sensitivity to ibuprofen, suggesting that UGT2B15 plays a major role in the residual testosterone glucuronidation activity in UGT2B17-deficient individuals. Nonetheless, a minor contribution of other UGTs, particularly UGT1A9, to testosterone glucuronidation in such individuals cannot be ruled out at this stage. The epitestosterone glucuronidation activity of human liver microsomes was largely insensitive to ibuprofen and diclofenac. Taken together, the results highlight potential interactions between NSAIDs and androgen glucuronidation with possible implications for the validity of doping tests.  相似文献   
84.
Phenylbutazone (PB) is known to be biotransformed to its O- and C-glucuronide. Recently, we reported that PB C-glucuronide formation is catalyzed by UGT1A9. Interestingly, despite UGT1A8 sharing high amino acid sequence identity with UGT1A9, UGT1A8 had no PB C-glucuronidating activity. In the present study, we constructed eight UGT1A9/UGT1A8 chimeras and evaluated which region is important for PB C-glucuronide formation. All of the chimeras and UGT1A8 and UGT1A9 had 7-hydroxy-(4-trifluoromethyl)coumarin (HFC) O-glucuronidating activity. The Km values for HFC glucuronidation of UGT1A8, UGT1A9 and their chimeras were divided into two types, UGT1A8 type (high Km) and UGT1A9 type (low Km), and these types were determined according to whether their amino acids at positions 69-132 were those of UGT1A8 or UGT1A9. Likewise, PB O-glucuronidating activity was also detected by all of the chimeras, and their Km values were divided into two types. On the contrary, PB C-glucuronidating activity was detected by UGT1A9(1-132)/1A8(133-286), UGT1A9(1-212)/1A8(213-286), UGT1A8(1-68)/1A9(69-286), and UGT1A8(1-68)/1A9(69-132)/1A8(133-286) chimeras. The region 1A9(69-132) was common among chimeras having PB C-glucuronidating activity. Of interest is that UGT1A9(1-68)/1A8(69-132)/1A9(133-286) had lost PB C-glucuronidation activity, but retained activities of PB and HFC O-glucuronidation. These results strongly suggested that amino acid positions 69-132 of UGT1A9 are responsible for chemoselectivity for PB and affinity to substrates such as PB and HFC.  相似文献   
85.
The primary objective of this study was to evaluate the modulation of UGT1A1 expression in human hepatocytes using prototypical CYP450 inducers. A bank of 16 human livers was utilized to obtain an estimate of the range of UGT1A1 protein expression and catalytic activity. Concentration-dependent changes in UGT1A1 response were evaluated in hepatocyte cultures after treatment with 3-methylchloranthrene, beta-napthoflavone, rifampicin, or phenobarbital. Pharmacodynamic analyses of UGT1A1 expression were conducted and compared to those of CYP450 after treatment with inducers in 2-3 different hepatocyte preparations. Additionally, expression of UGT1A1 mRNA and protein was evaluated in human hepatocytes treated with 14 different compounds known to activate differentially the human pregnane-X-receptor or constitutive androstane receptor. Pharmacodynamic modeling revealed EC50 values statistically significant between UGT1A1 and CYP2B6 after treatment with PB, but not statistically distinguishable between UGT1A1 and CYP's 1A2 or 3A4 after treatment with 3-methylchloranthrene or rifampicin, respectively. UGT1A1 was most responsive to the pregnane-X-receptor-agonists rifampicin, ritonavir, and clotrimazole at the mRNA level and, to a lesser extent, the constitutive androstane receptor-activators, phenobarbital and phenytoin. Pharmacodynamic analyses support a mechanism of coordinate regulation between UGT1A1 and a number of CYP450 enzymes by multiple nuclear receptors.  相似文献   
86.
The delivery of drugs to the brain is complicated by the multiple factors including low blood–brain barrier (BBB) passive permeability, active BBB efflux systems, and plasma protein binding. Thus, a detailed understanding of the transport of the new potent substances through the membranes is vitally important and their physico-chemical characteristics should be analyzed at first. This work presents an evaluation of drug likeness of eight 7-O-arylpiperazinylcoumarin derivatives with high affinity towards serotoninergic receptors 5-HT1A and 5-HT2A with particular analysis of the requirements for the CNS chemotherapeutics. The binding constants to human serum albumin (HSA) were determined at physiological pH using fluorescence spectroscopy, and then their mode of action was explained by analysis of theoretical HSA complexes. Dynamic simulation of systems allowed for reliable evaluation of the interaction strength. The analyzed coumarins were able to pass BBB, and they present good drug likeness properties. They showed high affinities to HSA (log KQ = 5.3–6.0 which corresponds to −8.12 to −7.15 kcalmol−1 of Gibbs free energy). The changes of the emission intensity upon binding to HSA were scrutinized showing the different mode of action for 4-phenylpiperazinylcoumarins. The values of computed Gibbs free energy and determined on the basis of experimentally obtained binding constants log KQ coincide suggesting a good quality of the theoretical model. Overall the 8-acetyl-7-O-arylpiperazinyl-4-methylcoumarin derivatives represent valuable lead compounds to be further tested in various preclinical assays as a possible chemotherapeutics against CNS diseases. Studied coumarins can be metabolized by cytochrome P450 to aldehydes and hydroxy derivatives. The existence of other binding sites inside HSA than Sudlow’s site 1 was postulated. The longer aliphatic linker between coumarin and piperazine moieties favored binding to HSA in other than Sudlow site 1 pocket.  相似文献   
87.
Fragment splicing is a primary strategy in the design and optimization of leading compound toward new skeleton with target bioactivity. Herein a series of novel substituted phenyl oxazole derivatives were designed via fragment analysis and coupling strategy that led to highly potent and bio-selective herbicide safener. The biological tests showed that most of the compounds could enhance the maize growth index, glutathione content and anti-reverse enzyme glutathione S-transferase activity in vivo. The molecular docking model exhibited that the novel compound could compete with chlorsulfuron binding to the herbicide target enzyme, which consequently attained the herbicide detoxification. Especially compound I-f displayed the best activities than commercial safener isoxadifen-ethyl and other compounds. The present work demonstrates that the synthesized compounds could be developed as potential candidates for the discovery of novel herbicide safeners in the future.  相似文献   
88.
UGT78H2是从黑莓果实中新发现的一个植物糖基转移酶家族成员,获得重组蛋白是后续深入研究该基因功能的基础。本研究通过构建原核表达载体,并应用响应面分析方法对重组蛋白的诱导条件(如诱导温度、IPTG浓度、菌液浓度和诱导时间)进行了优化,结果表明:(1)构建了pET32a-UGT78H2原核表达载体,并成功导入到BL21(DE3)pLysS细菌中;(2)经响应面优化,在29.5℃培养工程菌至菌液OD600=0.51,加入终浓度为0.4 mmol·L-1的IPTG诱导7.4 h,可获得最大量重组蛋白166.4 μg·mL-1(占总蛋白41.6%);(3)诱导时间和培养温度极显著地影响重组蛋白表达量,诱导剂IPTG和诱导前菌液浓度之间的交互效应显著影响重组蛋白的表达;(4)获得的带S-tag和His-tag的UGT78H2重组蛋白分子量为67.9 kDa,主要以包涵体形式存在,通过Ni-NTA柱纯化,成功获得了重组蛋白。以上结果为进一步采用酶学方法进行UGT78H2蛋白功能鉴定提供了基础资料。  相似文献   
89.
The glycosyltransferase UGT78G1 from Medicago truncatula catalyzes the glycosylation of various (iso)flavonoids such as the flavonols kaempferol and myricetin, the isoflavone formononetin, and the anthocyanidins pelargonidin and cyanidin. It also catalyzes a reverse reaction to remove the sugar moiety from glycosides. The structures of UGT78G1 bound with uridine diphosphate or with both uridine diphosphate and myricetin were determined at 2.1 Å resolution, revealing detailed interactions between the enzyme and substrates/products and suggesting a distinct binding mode for the acceptor/product. Comparative structural analysis and mutagenesis identify glutamate 192 as a key amino acid for the reverse reaction. This information provides a basis for enzyme engineering to manipulate substrate specificity and to design effective biocatalysts with glycosylation and/or deglycosylation activity.  相似文献   
90.
Triterpenoid saponins are naturally occurring structurally diverse glycosides of triterpenes that are widely distributed among plant species. Great interest has been expressed by pharmaceutical and agriculture industries for the glycosylation of triterpenes. Such modifications alter their taste and bio-absorbability, affect their intra?/extracellular transport and storage in plants, and induce novel biological activities in the human body. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze glycosylation using UDP sugar donors. These enzymes belong to a multigene family and recognize diverse natural products, including triterpenes, as the acceptor molecules. For this review, we collected and analyzed all of the UGT sequences found in Arabidopsis thaliana as well as 31 other species of triterpene-producing plants. To identify potential UGTs with novel functions in triterpene glycosylation, we screened and classified those candidates based on similarity with UGTs from Panax ginseng, Glycine max, Medicago truncatula, Saponaria vaccaria, and Barbarea vulgaris that are known to function in glycosylate triterpenes. We highlight recent findings on UGT inducibility by methyl jasmonate, tissue-specific expression, and subcellular localization, while also describing their catalytic activity in terms of regioselectivity for potential key UGTs dedicated to triterpene glycosylation in plants. Discovering these new UGTs expands our capacity to manipulate the biological and physicochemical properties of such valuable molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号