首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   5篇
  国内免费   3篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   6篇
  2018年   5篇
  2017年   1篇
  2016年   5篇
  2015年   6篇
  2014年   10篇
  2013年   6篇
  2012年   4篇
  2011年   6篇
  2010年   1篇
  2009年   9篇
  2008年   10篇
  2007年   9篇
  2006年   10篇
  2005年   7篇
  2004年   8篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
101.
Gunn rat is a hyperbilirubinemic rat strain that is inherently deficient in the activity of UDP-glucuronosyltransferase form 1A1 (UGT1A1). A premature termination codon is predicted to produce truncated UGT1 proteins that lack the COOH-terminal 116 amino acids in Gunn rat. Pulse-chase experiments using primary cell cultures showed that the truncated UGT1A1 protein in Gunn rat hepatocytes was synthesized similarly to wild-type UGT1A1 protein in normal Wistar rat hepatocytes. However, the truncated UGT1A1 protein was degraded rapidly with a half-life of about 50 min, whereas the wild-type UGT1A1 protein had a much longer half-life of about 10 h. The rapid degradation of truncated UGT1A1 protein was inhibited partially but not completely by treating Gunn rat hepatocytes with proteasome inhibitors such as carbobenzoxy-Leu-Leu-leucinal and lactacystin. By contrast, neither the lysosomal cysteine protease inhibitor nor the calpain inhibitor slowed the degradation. Our findings show that the absence of UGT1 protein from Gunn rat hepatocytes is due to rapid degradation of the truncated UGT1 protein by the proteasome and elucidate the molecular basis underlying the deficiency in bilirubin glucuronidation.  相似文献   
102.
On the origin of family 1 plant glycosyltransferases   总被引:17,自引:0,他引:17  
The phylogeny of highly divergent multigene families is often difficult to validate but can be substantiated by inclusion of data outside of the phylogeny, such as signature motifs, intron splice site conservation, unique substitutions of conserved residues, similar gene functions, and out groups. The Family 1 Glycosyltransferases (UGTs) comprises such a highly divergent, polyphyletic multigene family. Phylogenetic comparisons of UGTs from plants, animals, fungi, bacteria, and viruses reveal that plant UGTs represent three distinct clades. The majority of the plant sequences appears to be monophyletic and have diverged after the bifurcation of the animal/fungi/plant kingdoms. The two minor clades contain the sterol and lipid glycosyltransferases and each show more homology to non-plant sequences. The lipid glycosyltransferase clade is homologous to bacterial lipid glycosyltransferases and reflects the bacterial origin of chloroplasts. The fully sequenced Arabidopsis thaliana genome contains 120 UGTs including 8 apparent pseudogenes. The phylogeny of plant glycosyltransferases is substantiated with complete phylogenetic analysis of the A. thaliana UGT multigene family, including intron-exon organization and chromosomal localization.  相似文献   
103.
This study analyses the activity of an Arabidopsis thaliana UDP-glycosyltransferase, UGT71B6 (71B6), towards abscisic acid (ABA) and its structural analogues. The enzyme preferentially glucosylated ABA and not its catabolites. The requirement for a specific chiral configuration of (+)-ABA was demonstrated through the use of analogues with the chiral centre changed or removed. The enzyme was able to accommodate extra bulk around the double bond of the ABA ring but not alterations to the 8'- and 9'-methyl groups. Interestingly, the ketone of ABA was not required for glucosylation. Bioactive analogues, resistant to 8'-hydroxylation, were also poor substrates for conjugation by UGT71B6. This suggests the compounds may be resistant to both pathways of ABA inactivation and may, therefore, prove to be useful agrochemicals for field applications.  相似文献   
104.
Two UDP-glucuronosyltransferases (UGT2B9(*)2 and UGT2B33) have been isolated from female rhesus monkey liver. Microsomal preparations of the cell lines expressing the UGTs catalyzed the glucuronidation of the general substrate 7-hydroxy-4-(trifluoromethyl)coumarin in addition to selected estrogens (beta-estradiol and estriol) and opioids (morphine, naloxone, and naltrexone). UGT2B9(*)2 displayed highest efficiency for beta-estradiol-17-glucuronide production and did not catalyze the glucuronidation of naltrexone. UGT2B33 displayed highest efficiency for estriol and did not catalyze the glucuronidation of beta-estradiol. UGT2B9(*)2 was found also to catalyze the glucuronidation of 4-hydroxyestrone, 16-epiestriol, and hyodeoxycholic acid, while UGT2B33 was capable of conjugating 4-hydroxyestrone, androsterone, diclofenac, and hyodeoxycholic acid. Three glucocorticoids (cortisone, cortisol, and corticosterone) were not substrates for glucuronidation by liver or kidney microsomes or any expressed UGTs. Our current data suggest the use of beta-estradiol-3-glucuronidation, beta-estradiol-17-glucuronidation, and estriol-17-glucuronidation to assay UGT1A01, UGT2B9(*)2, and UGT2B33 activity in rhesus liver microsomes, respectively.  相似文献   
105.
5,6-Dimethylxanthenone-4-acetic acid (DMXAA) is a potent cytokine inducer, with a bioavailability of >70% in the mouse. The aim of this study was to develop and validate HPLC methods for the determination of DMXAA and DMXAA acyl glucuronide (DMXAA-G) in the human intestinal cell line Caco-2 monolayers. The developed HPLC methods were sensitive and reliable, with acceptable accuracy (85-115% of true values) and precision (intra- and inter-assay CV < 15%). The total running time was within 6.8 min, with acceptable separation of the compounds of interest. The limit of quantitation (LOQ) values for DMXAA and DMXAA-G were 14.2 and 24 ng/ml, respectively. The validated HPLC methods were applied to examine the epithelial transport of DMXAA and DMXAA-G by Caco-2 monolayers. The permeability coefficient (Papp) values (overall mean +/- S.D., n = 3-9) of DMXAA over 10-500 microM were independent of concentration for both apical (AP) to basolateral (BL) (4.0 +/- 0.4 x 10(-5)cm/s) and BL-AP (4.3 +/- 0.5 x 10(-5)cm/s) transport, and of similar magnitude in either direction, with net efflux ratio (Rnet) values of 1-1.3. However, the Papp values for the BL to AP transport of DMXAA-G were significantly greater than those for the AP to BL transport, with Rnet values of 17.6, 6.7 and 4.5 at 50, 100 and 200 microM, respectively. Further studies showed that the transport of DMXAA-G was Na+- and energy-dependent, and inhibited by MK-571 [a multidrug resistance associated protein (MRP) 1/2 inhibitor], but not by verapamil and probenecid. These data indicate that the HPLC methods for the determination of DMXAA and DMXAA-G in the transport buffer were simple and reliable, and the methods have been applied to the transport study of both compounds by Caco-2 monolayers. DMXAA across Caco-2 monolayers was through a passive transcellular process, whereas the transport of DMXAA-G was mediated by MRP1/2.  相似文献   
106.
Although they have several important limitations primary human hepatocytes still represent the in vitro gold standard model for xenobiotic metabolism and toxicity studies. The large use of human liver cell lines either from tumoral origin or obtained by oncogenic immortalisation is prevented by the loss of various liver-specific functions, especially many cytochrome P450 (CYP)-related enzyme activities. We review here recent results obtained with a new human hepatoma cell line, named HepaRG, derived from a human hepatocellular carcinoma. These cells exhibit unique features: when seeded at low density they acquire an elongated undifferentiated morphology, actively divided and after having reached confluency formed typical hepatocyte-like colonies surrounded by biliary epithelial-like cells. Moreover contrary to other human hepatoma cell lines including HepG2 cells, HepaRG cells express various CYPs (CYP1A2, 2B6, 2C9, 2E1, 3A4) and the nuclear receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) at levels comparable to those found in cultured primary human hepatocytes. They also express various other functions such phase 2 enzymes, apical and canalicular ABC transporters and basolateral solute carrier transporters, albumin, haptoglobin as well as aldolase B that is a specific marker of adult hepatocytes. HepaRG cells could represent a surrogate to primary human hepatocytes for xenobiotic metabolism and toxicity studies and even more, a unique model system for analysing genotoxic compounds.  相似文献   
107.
Polychlorinated biphenyl (PCB) and PCB metabolites are highly lipophilic and accumulate easily in the lipid bilayer and fat deposits of the body. The molecular cytotoxic mechanisms of these metabolites are still not understood. The aim of the present study was to compare the cytotoxicity and toxicological properties of six dihydroxylated metabolites using isolated rat hepatocytes. All of the metabolites were more cytotoxic than 4-chlorobiphenyl (4-ClBP) and less cytotoxic than phenyl hydroquinone (PHQ). The order of cytotoxic effectiveness of catecholic metabolites expressed as LC(50) (2h) was 3',4'-diCl-2,3-diOH-biphenyl>PHQ>4'-Cl-2,5-diOH-biphenyl, 4'-Cl-2,3-diOH-biphenyl>2',5'-diCl-3,4-diOH-biphenyl>2',3'-diCl-3,4-diOH-biphenyl>3',4'-diCl-3,4-diOH-biphenyl>4'Cl-3,4-diOH-biphenyl>4'-Cl-biphenyl; showing that the positions of hydroxyl and chlorine groups were important for their hepatotoxicity and that the two 2,3-diOH congeners were the most cytotoxic. Cytotoxicity for 3,4-diOH metabolites correlated with the number and position of chlorine atoms with the more chlorine atoms being more cytotoxic. The cytotoxic order of metabolites with two chlorine atoms being 2',5'>2',3'>3',4'. Borneol, an uridine diphosphate glucuronosyltransferases (UGT) inhibitor, increased the cytotoxicity of all tested metabolites; suggesting that glucuronidation was a major mechanism of elimination of these compounds. On the other hand entacapone, a catechol-O-methyl transferase (COMT) inhibitor, only increased the cytotoxicity of 3',4'-diCl-3,4-diOH-biphenyl, 3',4'-diCl-2,3-diOH-biphenyl and 4'-Cl-2,3-diOH-biphenyl. Hepatocyte GSH was depleted (oxidized and conjugated) by these metabolites before cytotoxicity ensued in a similar order of effectiveness to their cytotoxicity with PHQ being the most effective. Hepatocyte mitochondrial membrane potential also decreased before cytotoxicity ensued with a similar order of effectiveness as their cytotoxicity. These results suggest that catecholic cytotoxicity can be attributed to mitochondrial toxicity and oxidative stress. Semiquinone or benzoquinone species were also important in the cytotoxicity of catecholic metabolites.  相似文献   
108.
109.
The study of glucosinolates and their regulation has provided a powerful framework for the exploration of fundamental questions about the function, evolution, and ecological significance of plant natural products, but uncertainties about their metabolism remain. Previous work has identified one thiohydroximate S‐glucosyltransferase, UGT74B1, with an important role in the core pathway, but also made clear that this enzyme functions redundantly and cannot be the sole UDP‐glucose dependent glucosyltransferase (UGT) in glucosinolate synthesis. Here, we present the results of a nearly comprehensive in vitro activity screen of recombinant Arabidopsis Family 1 UGTs, which implicate other members of the UGT74 clade as candidate glucosinolate biosynthetic enzymes. Systematic genetic analysis of this clade indicates that UGT74C1 plays a special role in the synthesis of aliphatic glucosinolates, a conclusion strongly supported by phylogenetic and gene expression analyses. Finally, the ability of UGT74C1 to complement phenotypes and chemotypes of the ugt74b1‐2 knockout mutant and to express thiohydroximate UGT activity in planta provides conclusive evidence for UGT74C1 being an accessory enzyme in glucosinolate biosynthesis with a potential function during plant adaptation to environmental challenge.  相似文献   
110.
Plant secondary metabolism is an active research area because of the unique and important roles the specialized metabolites have in the interaction of plants with their biotic and abiotic environment, the diversity and complexity of the compounds and their importance to human medicine. Thousands of natural accessions of Arabidopsis thaliana characterized with increasing genomic precision are available, providing new opportunities to explore the biochemical and genetic mechanisms affecting variation in secondary metabolism within this model species. In this study, we focused on four aromatic metabolites that were differentially accumulated among 96 Arabidopsis natural accessions as revealed by leaf metabolic profiling. Using UV, mass spectrometry, and NMR data, we identified these four compounds as different dihydroxybenzoic acid (DHBA) glycosides, namely 2,5-dihydroxybenzoic acid (gentisic acid) 5-O-β-D-glucoside, 2,3-dihydroxybenzoic acid 3-O-β-D-glucoside, 2,5-dihydroxybenzoic acid 5-O-β-D-xyloside, and 2,3-dihydroxybenzoic acid 3-O-β-D-xyloside. Quantitative trait locus (QTL) mapping using recombinant inbred lines generated from C24 and Col-0 revealed a major-effect QTL controlling the relative proportion of xylosides vs. glucosides. Association mapping identified markers linked to a gene encoding a UDP glycosyltransferase gene. Analysis of Transfer DNA (T-DNA) knockout lines verified that this gene is required for DHBA xylosylation in planta and recombinant protein was able to xylosylate DHBA in vitro. This study demonstrates that exploiting natural variation of secondary metabolism is a powerful approach for gene function discovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号