首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11536篇
  免费   814篇
  国内免费   303篇
  2023年   207篇
  2022年   236篇
  2021年   363篇
  2020年   321篇
  2019年   504篇
  2018年   424篇
  2017年   305篇
  2016年   311篇
  2015年   370篇
  2014年   722篇
  2013年   905篇
  2012年   474篇
  2011年   615篇
  2010年   447篇
  2009年   554篇
  2008年   556篇
  2007年   571篇
  2006年   522篇
  2005年   542篇
  2004年   400篇
  2003年   373篇
  2002年   329篇
  2001年   181篇
  2000年   172篇
  1999年   164篇
  1998年   176篇
  1997年   137篇
  1996年   116篇
  1995年   149篇
  1994年   119篇
  1993年   104篇
  1992年   124篇
  1991年   84篇
  1990年   79篇
  1989年   70篇
  1988年   75篇
  1987年   58篇
  1986年   36篇
  1985年   68篇
  1984年   126篇
  1983年   88篇
  1982年   71篇
  1981年   74篇
  1980年   75篇
  1979年   65篇
  1978年   36篇
  1977年   35篇
  1976年   27篇
  1975年   20篇
  1974年   20篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Reduction of plasma LCAT activity has been observed in several conditions in which the size of HDL particles is increased; however, the mechanism of this reduction remains elusive. We investigated the plasma activity, mass, and in vivo catabolism of LCAT and its association with HDL particles in human apolipoprotein A-I transgenic, scavenger receptor class B type I knockout (hA-ITg SR-BI-/-) mice. Compared with hA-ITg mice, hA-ITg SR-BI-/- mice had a 4-fold higher total plasma cholesterol concentration, which occurred predominantly in 13-18 nm diameter HDL particles, a significant reduction in plasma esterified cholesterol-total cholesterol (EC/TC) ratio, and significantly lower plasma LCAT activity, suggesting a decrease in LCAT protein. However, LCAT protein in plasma, hepatic mRNA for LCAT, and in vivo turnover of 35S-radiolabeled LCAT were similar in both genotypes of mice. HDL from hA-ITg SR-BI-/- mice was enriched in sphingomyelin (SM), relative to phosphatidylcholine, and had less associated [35S]LCAT radiolabel and endogenous LCAT activity compared with HDL from hA-ITg mice. We conclude that the decreased EC/TC ratio in the plasma of hA-ITg SR-BI-/- mice is attributed to a reduction in LCAT reactivity with SM-enriched HDL particles.  相似文献   
992.
The lipodystrophies are characterized by loss of adipose tissue in some anatomical sites, frequently with fat accumulation in nonatrophic depots and ectopic sites such as liver and muscle. Molecularly characterized forms include Dunnigan-type familial partial lipodystrophy (FPLD), partial lipodystrophy with mandibuloacral dysplasia (MAD), Berardinelli-Seip congenital generalized lipodystrophy (CGL), and some cases with Barraquer-Simons acquired partial lipodystrophy (APL). The associated mutant gene products include 1) nuclear lamin A in FPLD type 2 and MAD type A; 2) nuclear lamin B2 in APL; 3) nuclear hormone receptor peroxisome proliferator-activated receptor gamma in FPLD type 3; 4) lipid biosynthetic enzyme 1-acylglycerol-3-phosphate O-acyltransferase 2 in CGL type 1; 5) integral endoplasmic reticulum membrane protein seipin in CGL type 2; and 6) metalloproteinase ZMPSTE24 in MAD type B. An unresolved question is whether metabolic disturbances are secondary to adipose repartitioning or result from a direct effect of the mutant gene product. Careful analysis of clinical, biochemical, and imaging phenotypes, using an approach called "phenomics," reveals differences between genetically stratified subtypes that can be used to guide basic experiments and to improve our understanding of common clinical entities, such as metabolic syndrome or the partial lipodystrophy syndrome associated with human immunodeficiency virus infection.  相似文献   
993.
In the context of obesity and its related maladies, the adipocyte plays a central role in the balance, or imbalance, of metabolic homeostasis. An obese, hypertrophic adipocyte is challenged by many insults, including surplus energy, inflammation, insulin resistance, and considerable stress to various organelles. The endoplasmic reticulum (ER) is one such vital organelle that demonstrates significant signs of stress and dysfunction in obesity and insulin resistance. Under normal conditions, the ER must function in the unique and trying environment of the adipocyte, adapting to meet the demands of increased protein synthesis and secretion, energy storage in the form of triglyceride droplet formation, and nutrient sensing that are particular to the differentiated fat cell. When nutrients are in pathological excess, the ER is overwhelmed and the unfolded protein response (UPR) is activated. Remarkably, the consequences of UPR activation have been causally linked to the development of insulin resistance through a multitude of possible mechanisms, including c-jun N-terminal kinase activation, inflammation, and oxidative stress. This review will focus on the function of the ER under normal conditions in the adipocyte and the pathological effects of a stressed ER contributing to adipocyte dysfunction and a thwarted metabolic homeostasis.  相似文献   
994.
Treatment of atherosclerotic disease often focuses on reducing plasma LDL-cholesterol or increasing plasma HDL-cholesterol. We examined in vitro the effects on HDL receptor [scavenger receptor class B type I (SR-BI)] activity of three classes of clinical and experimental plasma HDL-cholesterol-elevating compounds: niacin, fibrates, and HDL376. Fenofibrate (FF) and HDL376 were potent (IC(50) approximately 1 microM), direct inhibitors of SR-BI-mediated lipid transport in cells and in liposomes reconstituted with purified SR-BI. FF, a prodrug, was a more potent inhibitor of SR-BI than an activator of peroxisome proliferator-activated receptor alpha, a target of its active fenofibric acid (FFA) derivative. Nevertheless, FFA, four other fibrates (clofibrate, gemfibrozil, ciprofibrate, and bezafibrate), and niacin had little, if any, effect on SR-BI, suggesting that they do not directly target SR-BI in vivo. However, similarities of HDL376 treatment and SR-BI gene knockout on HDL metabolism in vivo (increased HDL-cholesterol and HDL particle sizes) and structure-activity relationship analysis suggest that SR-BI may be a target of HDL376 in vivo. HDL376 and other inhibitors may help elucidate SR-BI function in diverse mammalian models and determine the therapeutic potential of SR-BI-directed pharmaceuticals.  相似文献   
995.
RNA recognition motif (RRM) domains bind both nucleic acids and proteins. Several proteins that contain two closely spaced RRM domains were previously found in protein complexes formed by the cap region of human topoisomerase I, a nuclear enzyme responsible for DNA relaxation or phosphorylation of SR splicing proteins. To obtain molecular insight into specific interactions between the RRM proteins and the cap region of topo I we examined their binary interactions using the yeast two-hybrid system. The interactions were established for hnRNP A1, p54(nrb) and SF2/ASF, but not for hnRNP L or HuR. To identify the amino acid pattern responsible for binding, experimental mutagenesis was employed and computational modelling of these processes was carried out. These studies revealed that two RRM domains and six residues of the consensus sequence are required for the binding to the cap region. On the basis of the above data, a structural model for the hnRNP A1-topoisomerase I complex was proposed. The main component of the hnRNP A1 binding site is a hydrophobic pocket on the beta-surface of the first RRM domain, similar to that described for Y14 protein interacting with Mago. We demonstrated that the interaction between RRM domains and the cap region was important for the kinase reaction catalyzed by topoisomerase I. Together with the previously described inhibitory effect of RRM domains of SF2/ASF on DNA cleavage, the above suggests that the binding of RRM proteins could regulate the activity of topoisomerase I.  相似文献   
996.
Prompted by the close relationship between tyrosine recombinases and type IB topoisomerases we have investigated the ability of human topoisomerase I to resolve the typical intermediate of recombinase catalysis, the Holliday junction. We demonstrate that human topoisomerase I catalyzes unidirectional resolution of a synthetic Holliday junction substrate containing two preferred cleavage sites surrounded by DNA sequences supporting branch migration. Deleting part of the N-terminal domain (amino acid residues 1-202) did not affect topoisomerase I resolution activity, whereas a topoisomerase I variant lacking both the N-terminal domain and amino acid residues 660-688 of the linker domain was unable to resolve the Holliday junction substrate. The inability of the double deleted variant to mediate resolution correlated with the inability of this enzyme to introduce concomitant cleavage at the two preferred cleavage sites in a single Holliday junction substrate, which is a prerequisite for resolution. As determined by the gel electrophoretic mobility of native enzyme or enzyme crosslinked by disulfide bridging, the double deleted mutant existed almost entirely in a dimeric form. The impairment of this enzyme in performing double cleavages on the Holliday junction substrate may be explained by only one cleavage competent active site being formed at a time within the dimer. The assembly of only one active site within dimers is a well-known characteristic of the tyrosine recombinases. Hence, the obtained results may suggest a recombinase-like active site assembly of the double deleted topoisomerase I variant. Taken together the presented results consolidate the relationship between type IB topoisomerases and tyrosine recombinases.  相似文献   
997.
Sulphate-reducing bacteria have a wide variety of periplasmic cytochromes involved in electron transfer from the periplasm to the cytoplasm. HmcA is a high molecular mass cytochrome of 550 amino acid residues that harbours 16 c-type heme groups. We report the crystal structure of HmcA isolated from the periplasm of Desulfovibrio gigas. Crystals were grown using polyethylene glycol 8K and zinc acetate, and diffracted beyond 2.1 A resolution. A multiple-wavelength anomalous dispersion experiment at the iron absorption edge enabled us to obtain good-quality phases for structure solution and model building. DgHmcA has a V-shape architecture, already observed in HmcA isolated from Desulfovibrio vulgaris Hildenborough. The presence of an oligosaccharide molecule covalently bound to an Asn residue was observed in the electron density maps of DgHmcA and confirmed by mass spectrometry. Three modified monosaccharides appear at the highly hydrophobic vertex, possibly acting as an anchor of the protein to the cytoplasmic membrane.  相似文献   
998.
Type I interferons (IFNs) elicit antiviral, antiproliferative and immunmodulatory responses by binding to a shared cell surface receptor comprising the transmembrane proteins ifnar1 and ifnar2. Activation of differential response patterns by IFNs has been observed, suggesting that members of the family play different roles in innate immunity. The molecular basis for differential signaling has not been identified yet. Here, we have investigated the recognition of various IFNs including several human IFNalpha species, human IFNomega and human IFNbeta as well as ovine IFNtau2 by the receptor subunits in detail. Binding to the extracellular domains of ifnar1 (ifnar1-EC) and ifnar2 (ifnar2-EC) was monitored in real time by reflectance interference and total internal reflection fluorescence spectroscopy. For all IFNs investigated, competitive 1:1 interaction not only with ifnar2-EC but also with ifnar1-EC was shown. Furthermore, ternary complex formation was studied with ifnar1-EC and ifnar2-EC tethered onto solid-supported membranes. These analyses confirmed that the signaling complexes recruited by IFNs have very similar architectures. However, differences in rate and affinity constants over several orders of magnitude were observed for both the interactions with ifnar1-EC and ifnar2-EC. These data were correlated with the potencies of ISGF3 activation, antiviral and anti-proliferative activity on 2fTGH cells. The ISGF3 formation and antiviral activity correlated very well with the binding affinity towards ifnar2. In contrast, the affinity towards ifnar1 played a key role for antiproliferative activity. A striking correlation was observed for relative binding affinities towards ifnar1 and ifnar2 with the differential antiproliferative potency. This correlation was confirmed by systematically engineering IFNalpha2 mutants with very high differential antiproliferative potency.  相似文献   
999.
1000.
Neurofibromin is the protein product of the tumor suppressor gene NF1, alterations of which are responsible for the pathogenesis of the common disorder Neurofibromatosis type I (NF1). The only well-characterized function of neurofibromin is its RasGAP activity, contained in the central GAP related domain (GRD). By solving the crystal structure of a 31 kDa fragment at the C-terminal end of the GRD we have recently identified a novel bipartite lipid-binding module composed of a Sec14 homologous and a previously undetected pleckstrin homology (PH)-like domain. Using lipid exchange assays along with mass spectrometry we show here that the Sec14-like portion binds to 1-(3-sn-phosphatidyl)-sn-glycerol (PtdGro), (3-sn-phosphatidyl)-ethanolamine (PtdEtn) and -choline (PtdCho) and to a minor extent to (3-sn-phosphatidyl)-l-serine (PtdSer) and 1-(3-sn-phosphatidyl)-d-myo-inositol (PtdIns). Phosphorylated PtdIns (PtdInsPs) are not detected as binders in the mass spectrometry assay, but their soluble inositol-phosphate headgroups and related compounds can inhibit the lipid exchange reaction. We also present here the crystal structure of this module with the Sec14 portion bound to a cellular glycerophospholipid ligand. Our structure has model character for the substrate-bound form of yeast Sec14p, of which only detergent bound structures are available so far. To assess potential regulation of the lipid exchange reaction in detail, we present a novel strategy using nanospray mass spectrometry. Ion intensities of initial phospholipids and exchanged deuterated analogues bound by the protein module allow the quantitative analysis of differences in the exchange activity under various conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号