首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4012篇
  免费   647篇
  国内免费   1211篇
  2024年   10篇
  2023年   142篇
  2022年   122篇
  2021年   166篇
  2020年   207篇
  2019年   245篇
  2018年   238篇
  2017年   216篇
  2016年   235篇
  2015年   175篇
  2014年   197篇
  2013年   291篇
  2012年   147篇
  2011年   191篇
  2010年   220篇
  2009年   230篇
  2008年   273篇
  2007年   265篇
  2006年   274篇
  2005年   231篇
  2004年   214篇
  2003年   198篇
  2002年   132篇
  2001年   125篇
  2000年   127篇
  1999年   120篇
  1998年   102篇
  1997年   80篇
  1996年   80篇
  1995年   64篇
  1994年   62篇
  1993年   55篇
  1992年   67篇
  1991年   43篇
  1990年   53篇
  1989年   55篇
  1988年   31篇
  1987年   36篇
  1986年   24篇
  1985年   24篇
  1984年   22篇
  1983年   4篇
  1982年   9篇
  1981年   13篇
  1980年   13篇
  1979年   6篇
  1978年   13篇
  1977年   8篇
  1976年   9篇
  1974年   3篇
排序方式: 共有5870条查询结果,搜索用时 15 毫秒
91.
热带-亚热带森林中猕猴的食性   总被引:5,自引:0,他引:5  
采用跟踪观察法对热带-亚热带森林中的猕猴种群的食性及其与植被类型的关系进行了调查,结果表明,猕猴主要选择季雨林或次生季雨林为其觅食场所,栖息地植物的地理分布和种类直接影响其食性,猕猴对植物各部位的采食频度随植物生长期而变化.  相似文献   
92.
Geert van Wirdum 《Hydrobiologia》1993,265(1-3):129-153
A survey of base-rich wetlands in The Netherlands is presented. The main area of their occurrence is the low-lying Holocene part of the country, until some thousand years ago a large and coherent wetland landscape: the Holland wetland. The development of various parts of the Holland wetland into marshes, fens and bogs can be understood from hydrological relations in mire basins, as recognized in the distinction of primary, secondary and tertiary mire basin stages. Presently, the remnants of the Holland wetland are separate base-rich wetlands. The succession of their vegetation reflects various abiotic conditions and human influences. Three main developmental periods are distinguished as regards these factors. The first, geological period of mire development is seen as a post-glacial relaxation, with the inertia due to the considerable mass of wetland as a stabilizing factor. Biological “grazing” influences, as an aspect of utilization by humans, converted base-rich wetlands to whole new types in the second, historical period. Presently, mass and harvesting have decreased in importance, and actual successions in terrestrializing turbaries seem to reflect rapidly changing environmental conditions. Human control could well become the most important factor in the future development of wetland nature. The present value of open fen vegetation strongly depends on the continuation of the historical harvesting. The development of wooded fen may help to increase the mass of wetland in the future. Best results in terms of biodiversity are expected when their base state is maintained through water management. The vegetation and hydrology of floating fens in terrestrializing turbaries is treated in some more detail. Various lines and phases in the succession are distinguished. Open fen vegetation at base-rich, yet nutrient-poor sites is very rich in species threatened elsewhere. The fast acidification of certain such fens is attributed to hydrological and management factors. This acidification is illustrated in the profile of a floating raft sample. At the scale of these small fens, the elemental structure comprising base-rich fen, transitional fen and bog vegetation, is not as stable as it was in the large Holland wetland. A critical role seems to be played by the supply of bases with the water influx. The changing base state is supposed to change the nutrient cycling to such an extent that it would be correct to call this trophic excitation of the ecosystem, rather than just eutrophication. Eutrophication indicates a quantitative reaction to an increased nutrient supply, the internal system being unaltered. The drainage of fens, resulting in an increased productivity of the vegetation, provides another example of excitation, to the effect that the functional system is dramatically changed internally.  相似文献   
93.
Gerhard Zotz  Klaus Winter 《Planta》1993,191(3):409-412
Diel (24 h) courses of net CO2 exchange of leaves were determined in eight species of tropical rainforest plants on Barro Colorado Island, Panama, during 1990 and 1991. The species included three canopy trees, one liana, two epiphytes and one hemiepiphyte. One of the species studied was growing in a rain-forest gap. Daily carbon gain varied considerably across species, leaf age, and season. The analysis of data for all plants from 64 complete day/night cycles revealed a linear relationship between the diurnal carbon gain and the maximum rate of net CO2 uptake, Amax. Nocturnal net carbon loss was about 10% of diurnal carbon gain and was positively related to Amax. We conclude that short-term measurements of light-saturated photosynthesis, performed at periodic intervals throughout the season, allow the annual leaf carbon balance in these rain-forest plants to be predicted.  相似文献   
94.
Vegetation cover creates competing effects on land surface temperature: it typically cools through enhancing energy dissipation and warms via decreasing surface albedo. Global vegetation has been previously found to overall net cool land surfaces with cooling contributions from temperate and tropical vegetation and warming contributions from boreal vegetation. Recent studies suggest that dryland vegetation across the tropics strongly contributes to this global net cooling feedback. However, observation-based vegetation-temperature interaction studies have been limited in the tropics, especially in their widespread drylands. Theoretical considerations also call into question the ability of dryland vegetation to strongly cool the surface under low water availability. Here, we use satellite observations to investigate how tropical vegetation cover influences the surface energy balance. We find that while increased vegetation cover would impart net cooling feedbacks across the tropics, net vegetal cooling effects are subdued in drylands. Using observations, we determine that dryland plants have less ability to cool the surface due to their cooling pathways being reduced by aridity, overall less efficient dissipation of turbulent energy, and their tendency to strongly increase solar radiation absorption. As a result, while proportional greening across the tropics would create an overall biophysical cooling feedback, dryland tropical vegetation reduces the overall tropical surface cooling magnitude by at least 14%, instead of enhancing cooling as suggested by previous global studies.  相似文献   
95.
Negative extreme anomalies in vegetation growth (NEGs) usually indicate severely impaired ecosystem services. These NEGs can result from diverse natural and anthropogenic causes, especially climate extremes (CEs). However, the relationship between NEGs and many types of CEs remains largely unknown at regional and global scales. Here, with satellite-derived vegetation index data and supporting tree-ring chronologies, we identify periods of NEGs from 1981 to 2015 across the global land surface. We find 70% of these NEGs are attributable to five types of CEs and their combinations, with compound CEs generally more detrimental than individual ones. More importantly, we find that dominant CEs for NEGs vary by biome and region. Specifically, cold and/or wet extremes dominate NEGs in temperate mountains and high latitudes, whereas soil drought and related compound extremes are primarily responsible for NEGs in wet tropical, arid and semi-arid regions. Key characteristics (e.g., the frequency, intensity and duration of CEs, and the vulnerability of vegetation) that determine the dominance of CEs are also region- and biome-dependent. For example, in the wet tropics, dominant individual CEs have both higher intensity and longer duration than non-dominant ones. However, in the dry tropics and some temperate regions, a longer CE duration is more important than higher intensity. Our work provides the first global accounting of the attribution of NEGs to diverse climatic extremes. Our analysis has important implications for developing climate-specific disaster prevention and mitigation plans among different regions of the globe in a changing climate.  相似文献   
96.
为探索适合格木(Erythrophleum fordii)人工林在幼龄阶段的种植密度,在不同林分密度(2 m×1 m、2 m×2 m、2 m×3 m、3 m×3 m)的6 a生格木人工林下设置标准样地,采用土壤质量评价和灰色关联度等方法,探究不同密度下格木幼林的土壤理化与林下植被特征。结果表明,密度2 m×3 m下的林木胸径、树高最优,较最低水平高16.7%、27.9%;土壤总孔隙度最大,全N、硝态N、铵态N含量最高,灌木草本多样性最高。相关性分析表明土壤化学性质对灌木草本的多样性影响最大。不同林分密度下格木幼林土壤理化性质及林下植物多样性有显著差异,因此,选择合适的林分密度对人工林土壤肥力的可持续利用及林分的经营培育至关重要。  相似文献   
97.

Aims

Woody plant encroachment is a widespread phenomenon affecting treeless or sparsely treed habitats. We aimed to determine the extent and timing of tree and shrub encroachment into rock barrens of eastern Ontario over the last century, and to assess implications for their ongoing management.

Location

Queen's University Biological Station in the Frontenac Arch ecoregion.

Methods

We quantified the extent of change in woody vegetation in 290 rock barrens using aerial photography from 1925, 1965, and 2008. Composition and structure of woody plant communities in 10 barrens was subsequently quantified in the field using plot-based sampling. Cores or cross-sections were obtained from individuals >1.5 m height and dendrochronological techniques were used to determine their age and identify temporal patterns of any woody encroachment.

Results

Aerial photography indicated that the mean proportion of woody plant cover in barrens increased 22.5% from 1925 to 2008. Dendroecological analysis supported this. Few trees were present prior to 1900 and most established since 1960. Fraxinus americana, Juniperus virginiana, and Juniperus communis were the most common woody species colonizing the barrens. Remnants of large Pinus strobus stumps with extensive charring were found in 90% of the sampled barrens at a mean density of 22.6 stumps ha−1.

Conclusions

Rock barrens on the Frontenac Arch have changed substantially over the past century; gradually being colonized by trees and shrubs and losing their distinctly open character. Active management — including prescribed fire and mechanical thinning — may be necessary if there is a desire to maintain these barrens and the rare species they support as components of the region's biodiversity. However, identification of a reference state for restoration is complicated by the fact that the structure and composition of these habitats were undoubtedly altered by European land clearance in the 19th century, and that some of these areas likely existed as pine woodlands before that.  相似文献   
98.

Aims

Shallow soils on acidic bedrock in dry areas of Central Europe support dry grasslands and heathlands that were formerly used as extensive pastures. These habitats are of high conservation value, but their abandonment in the 20th century triggered slow natural succession that poses a threat to specialized plant species. We asked how this vegetation and its plant diversity have changed over the past three decades and whether protected areas have positively affected habitat quality.

Location

Southwestern and central Moravia, Czech Republic.

Methods

In 2018–2019, we resurveyed 94 vegetation plots first sampled in 1986–1991 at 47 acidic dry grassland and heathland sites. We compared the number of all vascular plant species, Red List species and alien species per plot using parametric and non-parametric tests, life-form spectra using the chi-square test, species composition using detrended correspondence analysis, and indicator values using a permutation test. We also compared these changes between sites within and outside protected areas.

Results

Vegetation changes over the past three decades have been relatively small. However, we detected a decrease in total species richness, the number of Red List species and the number of characteristic species of dry grasslands. Neophytes were infrequent, while archaeophytes increased slightly. The competitive tall grass Arrhenatherum elatius, annual species and young woody plants increased in abundance or newly established at many sites. Indicator values did not change except for a slight increase in nutrient values. These negative trends occurred both within and outside protected areas but were more pronounced outside.

Conclusions

Formerly grazed acidic dry grasslands and heathlands in Moravia are slowly losing habitat specialists, including threatened plant species, and are increasingly dominated by Arrhenatherum elatius. Conservation management, especially cutting in protected areas, slows down the negative trends of decline in plant diversity and habitat quality but is insufficient to halt these processes completely.  相似文献   
99.
Development of planted seedlings of four canopy tree species in recently abandoned pastures (mown and unmown) and in ca. 40-yr old secondary dry forest in Guana-caste National Park, Costa Rica, was studied from July 1989–June 1992. The species were the light-demanding Cedrela odorata and Swietenia macrophylla, and the shade-tolerant Hymenaea courbaril and Manilkara chicle. Seedling mortality was high and primarily correlated with dry season drought. After the first dry season, M. chicle and C. odorata showed < 5 % survival in the pasture and 20 % in the forest, but after 3 yr survival had decreased to 3% in all plots. Survival of S. macrophylla was highest in the mown pasture (45 % after 3 yr) and lowest in the forest (10 %). For H. courbaril, survival was 40–55 % under all three conditions. Growth rates were low, with a height increment of < 15 cm/yr, possibly due to low precipitation in 1990 and 1991. All species grew taller in the pasture than in the forest. Differences in soil depth, texture and drainage appeared to contribute to variation in the results both within and between plots. Herbivory contributed to the lower survival of C. odorata and S. macrophylla in the forest.  相似文献   
100.
Estrada  A.  Coates-Estrada  R.  Meritt  D.  Montiel  S.  Curiel  D. 《Plant Ecology》1993,107(1):245-257
Destruction and fragmentation of tropical rain forest result in a loss of species and of generating capacity of the ecosystem via animal vectors such as seed dispersal agents. To gather quantitative data regarding this ecological problem, birds and mammals were censused in 30 forest fragments, 15 agricultural islands representing five types of vegetation (coffee, cacao, citrus, pepper and mixed-crops) and in three pastures in Los Tuxtlas, southern Veracruz, Mexico. More than 6000 animals of 257 species were detected thus suggesting the existence of a rich species pool in the fragmented landscape. Frugivores accounted for 60% of species, for 72% of individuals censured and for 85% of the total animal biomass recorded. Clusters of small forest fragments (<100 ha) were richer in species and individuals than clusters of large area (>100 ha) forest islands. Pastures were especially poor in forest birds and mammals. While the agricultural islands studied contributed to only 1% of the total area of vegetation sampled, they contained 58% of all species detected and 34% of all individual birds and mammals censured. Recaptures indicated inter-island movements of forest birds and mammals. Forty percent of the species were detected in forest habitats only, the rest were detected in forest and in agricultural habitats. Seeds of forest interior plants dispersed by birds and bats were detected in the agricultural habitats. The value of agricultural islands as landscape features providing some degree of biotic connectivity among fragmented animal populations is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号