首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8278篇
  免费   817篇
  国内免费   954篇
  2023年   135篇
  2022年   161篇
  2021年   243篇
  2020年   270篇
  2019年   309篇
  2018年   280篇
  2017年   304篇
  2016年   323篇
  2015年   306篇
  2014年   341篇
  2013年   503篇
  2012年   335篇
  2011年   327篇
  2010年   289篇
  2009年   345篇
  2008年   419篇
  2007年   442篇
  2006年   405篇
  2005年   341篇
  2004年   325篇
  2003年   354篇
  2002年   286篇
  2001年   281篇
  2000年   233篇
  1999年   258篇
  1998年   188篇
  1997年   210篇
  1996年   183篇
  1995年   152篇
  1994年   136篇
  1993年   129篇
  1992年   126篇
  1991年   124篇
  1990年   116篇
  1989年   101篇
  1988年   109篇
  1987年   76篇
  1986年   72篇
  1985年   97篇
  1984年   96篇
  1983年   55篇
  1982年   49篇
  1981年   45篇
  1980年   49篇
  1979年   22篇
  1978年   20篇
  1977年   22篇
  1976年   13篇
  1975年   9篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
BACKGROUND AND AIMS: It is well known that plant aerial development is affected by light intensity in terms of the date of flowering, the length of stems and petioles, and the final individual leaf area. The aim of the work presented here was to analyse how shade-induced changes in leaf development occur on a dynamic basis from the whole rosette level to that of the cells. METHODS: Care was taken to ensure that light intensity was the only source of micro-meteorological variation in the study. The dynamics of leaf production, rosette expansion, individual leaf area expansion and epidermal cell expansion were analysed in Arabidopsis thaliana plants grown under two light intensities in three independent experiments. KEY RESULTS: The total area of rosette leaves was reduced by the shading treatment. Both the number of leaves produced and their individual leaf areas were reduced. The reduction in leaf number was associated with a reduction in leaf initiation rate and the duration of the phase of leaf production. The reduction in individual leaf area was associated with a reduction in leaf expansion rate and an increase in the duration of leaf expansion. The changes in leaf expansion dynamics were accompanied by a decrease in epidermal cell number which was partly compensated for by an increase in epidermal cell area. Overall, the whole rosette leaf expansion rate was reduced by shading, whereas the total duration of rosette leaf expansion was unaffected. This was mainly due to the accumulation of the increases in the durations of expansion of each individual leaf which was associated with an increase in cell expansion. CONCLUSIONS: The dynamic analysis presented here reveals a new shade-adaptative response mediated via the control of area expansion at the cell, organ and whole plant levels.  相似文献   
993.
Background and Aims Neotyphodium lolii is a fungal endophyteof perennial ryegrass (Lolium perenne), improving grass fitnessthrough production of bioactive alkaloids. Neotyphodium speciescan also affect growth and physiology of their host grasses(family Poaceae, sub-family Pooideae), but little is known aboutthe mechanisms. This study examined the effect of N. lolii onnet photosynthesis (Pn) and growth rates in ryegrass genotypesdiffering in endophyte concentration in all leaf tissues. • Methods Plants from two ryegrass genotypes, Nui D andNui UIV, infected with N. lolii (E+) differing approx. 2-foldin endophyte concentration or uninfected clones thereof (E–)were grown in a controlled environment. For each genotype xendophyte treatment, plant growth rates were assessed as tilleringand leaf extension rates, and the light response of Pn, darkrespiration and transpiration measured in leaves of young (30–45d old) and old (>90 d old) plants with a single-chamber openinfrared gas-exchange system. • Key Results Neotyphodium lolii affected CO2-limited ratesof Pn, which were approx. 17 % lower in E+ than E– plants(P < 0·05) in the young plants. Apparent photon yieldand dark respiration were unaffected by the endophyte (P >0·05). Neotyphodium lolii also decreased transpiration(P < 0·05), but only in complete darkness. There wereno endophyte effects on Pn in the old plants (P > 0·05).E+ plants grew faster immediately after replanting (P < 0·05),but had approx. 10 % lower growth rates during mid-log growth(P < 0·05) than E– plants, but there was noeffect on final plant biomass (P > 0·05). The endophyteeffects on Pn and growth tended to be more pronounced in NuiUIV, despite having a lower endophyte concentration than NuiD. • Conclusions Neotyphodium lolii affects CO2 fixation,but not light interception and photochemistry of Pn. The impactof N. lolii on plant growth and photosynthesis is independentof endophyte concentration in the plant, suggesting that theendophyte mycelium is not simply an energy drain to the plant.However, the endophyte effects on Pn and plant growth are stronglydependent on the plant growth phase.  相似文献   
994.
BACKGROUND AND AIMS: Bacterial leaf scorch occurring in a number of economically important plants is caused by the xylem-limited bacterium Xylella fastidiosa (Xf). In grapevine, Xf systemic infection causes Pierce's disease and is lethal. Traditional dogma is that Xf movement between vessels requires the digestion of inter-vessel pit membranes. However, Yersinia enterocolitica (Ye) (a bacterium found in animals) and fluorescent beads moved rapidly within grapevine xylem from stem into leaf lamina, suggesting open conduits consisting of long, branched xylem vessels for passive movement. This study builds on and expands previous observations on the nature of these conduits and how they affect Xf movement. METHODS: Air, latex paint and green fluorescence protein (GFP)-Xf were loaded into leaves and followed to confirm and identify these conduits. Leaf xylem anatomy was studied to determine the basis for the free and sometimes restricted movement of Ye, beads, air, paint and GFP-Xf into the lamina. KEY RESULTS: Reverse loading experiments demonstrated that long, branched xylem vessels occurred exclusively in primary xylem. They were observed in the stem for three internodes before diverging into mature leaves. However, this stem-leaf connection was an age-dependent character and was absent for the first 10-12 leaves basal to the apical meristem. Free movement in leaf blade xylem was cell-type specific with vessels facilitating movement in the body of the blade and tracheids near the leaf margin. Air, latex paint and GFP-Xf all moved about 50-60% of the leaf length. GFP-Xf was never observed close to the leaf margin. CONCLUSIONS: The open vessels of the primary xylem offered unimpeded long distance pathways bridging stem to leaves, possibly facilitating the spread of bacterial pathogens in planta. GFP-Xf never reached the leaf margins where scorching appeared, suggesting a signal targeting specific cells or a toxic build-up at hydathodes.  相似文献   
995.
BACKGROUND AND AIMS: Soil water deficit is a major abiotic stress with severe consequences for the development, productivity and quality of crops. However, it is considered a positive factor in grapevine management (Vitis vinifera), as it has been shown to increase grape quality. The effects of soil water deficit on organogenesis, morphogenesis and gas exchange in the shoot were investigated. METHODS: Shoot organogenesis was analysed by distinguishing between the various steps in the development of the main axis and branches. Several experiments were carried out in pots, placed in a greenhouse or outside, in southern France. Soil water deficits of various intensities were imposed during vegetative development of the shoots of two cultivars ('Syrah' and 'Grenache N'). KEY RESULTS: All developmental processes were inhibited by soil water deficit, in an intensity-dependent manner, and sensitivity to water stress was process-dependent. Quantitative relationships with soil water were established for all processes. No difference was observed between the two cultivars for any criterion. The number of leaves on branches was particularly sensitive to soil water deficit, which rapidly and strongly reduced the rate of leaf appearance on developing branches. This response was not related to carbon availability, photosynthetic activity or the soluble sugar content of young expanding leaves. The potential number of branches was not a limiting factor for shoot development. CONCLUSIONS: The particularly high sensitivity to soil water deficit of leaf appearance on branches indicates that this process is a major determinant of the adaptation of plant leaf area to soil water deficit. The origin of this particular developmental response to soil water deficit is unclear, but it seems to be related to constitutive characteristics of branches rather than to competition for assimilates between axes differing in sink strength.  相似文献   
996.
Abstract An important question in the host‐finding behaviour of a polyphagous insect is whether the insect recognizes a suite or template of chemicals that are common to many plants? To answer this question, headspace volatiles of a subset of commonly used host plants (pigeon pea, tobacco, cotton and bean) and nonhost plants (lantana and oleander) of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) are screened by gas chromatography (GC) linked to a mated female H. armigera electroantennograph (EAG). In the present study, pigeon pea is postulated to be a primary host plant of the insect, for comparison of the EAG responses across the test plants. EAG responses for pigeon pea volatiles are also compared between females of different physiological status (virgin and mated females) and the sexes. Eight electrophysiologically active compounds in pigeon pea headspace are identified in relatively high concentrations using GC linked to mass spectrometry (GC‐MS). These comprised three green leaf volatiles [(2E)‐hexenal, (3Z)‐hexenylacetate and (3Z)‐hexenyl‐2‐methylbutyrate] and five monoterpenes (α‐pinene, β‐myrcene, limonene, E‐β‐ocimene and linalool). Other tested host plants have a smaller subset of these electrophysiologically active compounds and even the nonhost plants contain some of these compounds, all at relatively lower concentrations than pigeon pea. The physiological status or sex of the moths has no effect on the responses for these identified compounds. The present study demonstrates how some host plants can be primary targets for moths that are searching for hosts whereas the other host plants are incidental or secondary targets.  相似文献   
997.
The review sums up research conducted at CIAT within a multidiscipline effort revolving around a strategy for developing improved technologies to increase and sustain cassava productivity, as well as conserving natural resources in the various eco-edaphic zones where the crop is grown, with emphasis on stressful environments. Field research has elucidated several physiological plant mechanisms underlying potentially high productivity under favourable hot-humid environments in the tropics. Most notable is cassava inherent high capacity to assimilate carbon in near optimum environments that correlates with both biological productivity and root yield across a wide range of germplasm grown in diverse environments. Cassava leaves possess elevated activities of the C4 phosphoenolpyruvate carboxylase (PEPC) that also correlate with leaf net photosynthetic rate (P N) in field-grown plants, indicating the importance of selection for high P N. Under certain conditions such leaves exhibit an interesting photosynthetic C3-C4 intermediate behaviour which may have important implications in future selection efforts. In addition to leaf P N, yield is correlated with seasonal mean leaf area index (i.e. leaf area duration, LAD). Under prolonged water shortages in seasonally dry and semiarid zones, the crop, once established, tolerates stress and produces reasonably well compared to other food crops (e.g. in semiarid environments with less than 700 mm of annual rain, improved cultivars can yield over 3 t ha−1 oven-dried storage roots). The underlying mechanisms for such tolerance include stomatal sensitivity to atmospheric and edaphic water deficits, coupled with deep rooting capacities that prevent severe leaf dehydration, i.e. stress avoidance mechanisms, and reduced leaf canopy with reasonable photosynthesis over the leaf life span. Another stress-mitigating plant trait is the capacity to recover from stress, once water is available, by forming new leaves with even higher P N, compared to those in nonstressed crops. Under extended stress, reductions are larger in shoot biomass than in storage root, resulting in higher harvest indices. Cassava conserves water by slowly depleting available water from deep soil layers, leading to higher seasonal crop water-use and nutrient-use efficiencies. In dry environments LAD and resistance to pests and diseases are critical for sustainable yields. In semiarid zones the crop survives but requires a second wet cycle to achieve high yields and high dry matter contents in storage roots. Selection and breeding for early bulking and for medium/short-stemmed cultivars is advantageous under semiarid conditions. When grown in cooler zones such as in tropical high altitudes and in low-land sub-tropics, leaf P N is greatly reduced and growth is slower. Thus, the crop requires longer period for a reasonable productivity. There is a need to select and breed for more cold-tolerant genotypes. Selection of parental materials for tolerance to water stress and infertile soils has resulted in breeding improved germplasm adapted to both favourable and stressful environments. An erratum to this article is available at .  相似文献   
998.
Morpho-anatomical leaf traits and photosynthetic activity of two alpine herbs, Podophyllum hexandrum (shade-tolerant) and Rheum emodi (light-requiring), were studied under field (PAR>2 000 μmol m−2 s−1) and greenhouse (PAR 500 μmol m−2 s−1) conditions. Mesophyll thickness, surface area of mesophyll cells facing intercellular spaces (Smes), surface area of chloroplasts facing intercellular spaces (Sc), intercellular spaces of mesophyll cells (porosity), photon-saturated rate of photosynthesis per unit leaf area (P Nmax), and ribulose-1,5-bisphosphate carboxylase/oxygenase activity decreased in the greenhouse with respect to the field and the decreases were significantly higher in R. emodi than in P. hexandrum. P. hexandrum had lower intercellular CO2 concentration than R. emodi under both irradiances. The differences in acclimation of the two alpine herbs to low irradiance were due to their highly unlikely changes in leaf morphology, anatomy, and P Nmax which indicated that the difference in radiant energy requirement related to leaf acclimation had greater impact under low than high irradiance.  相似文献   
999.
We investigated the acclimation of seedlings of three tropical rain forest sub-canopy Garcinia species (G. xanthochymus, G. cowa, and G. bracteata) after transfer from 4.5 (LI) to 40 % (HI) sunlight and 12.5 (MI) sunlight to HI (LH1 and LH2 denoting transfer from LI to HI and MI to HI transfer, respectively). The changes of chlorophyll (Chl) fluorescence, net photosynthetic rate (P N), dark respiration rate (R D), Chl content per unit area (Chlarea), leaf mass per unit area (LMA), and seedling mortality were monitored over two months after transfer. These parameters together with leaf anatomy of transferred and control seedlings (kept in LI, MI, and HI) were also examined after two months. No seedlings died during the two months. Fv/Fm, P N, and Chlarea of the transferred seedlings decreased in the first 3 to 12 d. LH1 leaves showed larger reduction in Fv/Fm (>23 % vs. <16 %) and slower recovery of Fv/Fm than LH2 leaves. P N started to recover after about one week of I transfer and approached higher values in all G. cowa seedlings and G. xanthochymus LH1 seedlings than those before the transfer. However, P N of G. bracteata seedlings approached the values before transfer. The final P N values in leaves of transferred G. xanthochymus and G. cowa seedlings approached that of leaves kept in HI, while the final P N values of transferred leaves of G. bracteata were significantly lower than that of leaves grown under HI (p<0.05). R D of G. xanthochymus LH1 seedlings and all G. cowa seedlings increased and approached the value of the seedlings in HI. The final Chlarea of both G. xanthochymus and G. cowa approached the values before transfer, but that of G. bracteata did not recover to the level before transfer. The final Chlarea of all transferred seedlings was not significantly different from that of seedlings in HI except that G. cowa LH1 seedlings had higher Chlarea than that in HI. LMA decreased within 2 d and then increased continuously until about 30 d and approached the value under HI. Spongy/palisade mesophyll ratio decreased after transfer because of the increase in palisade thickness. Leaf thickness did not change, so LMA increase of transferred seedlings was mainly due to the increase of leaf density. Thus the mature leaves under LI and MI of G. xanthochymus and G. cowa are able to acclimate to HI by leaf physiological and anatomical adjustment, while G. bracteata had limited ability to acclimate to HI.  相似文献   
1000.
Stable carbon isotope composition (δ13C), net photosynthetic rate (P N), actual quantum yield of photosystem 2 (PS2) electron transport (ΦPS2), nitrogen content (Nc), and photosynthetic nitrogen use efficiency (PNUE) in the leaves of six broadleaf tree species were determined under field environmental conditions. The six tree species were Magnolia liliflora Desr., M. grandiflora Linn., M. denudata Desr., Prunus mume (Sieb.) Sieb. et Zucc. cv. Meiren Men, P. mume (Sieb.) Sieb. et Zucc. f. alphandii (Carr.) Rehd., and P. persica (L.) Batsch. var. rubro-plena. The relationships among δ13C, ΦPS2, P N, and PNUE, as well as their responses to Nc in the six species were also studied. Both P N and δ13C negatively correlated with Nc, but ΦPS2 positively correlated with Nc. This indicated that with Nc increase, P N and δ13C decreased, while ΦPS2 increased. There were weak negative correlations between δ13C and PNUE, and strong negative correlations (p<0.01) between ΦPS2 and PNUE. According to the variance analysis of parameters, there existed significant interspecific differences (p<0.001) of δ13C, P N, ΦPS2, PNUE, and Nc among the tree seedlings of the six tree species, which suggests that the potential photosynthetic capacities depend on plant species, irradiance, and water use capacity under field conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号