首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1036篇
  免费   32篇
  国内免费   81篇
  2024年   2篇
  2023年   8篇
  2022年   11篇
  2021年   15篇
  2020年   13篇
  2019年   17篇
  2018年   8篇
  2017年   15篇
  2016年   27篇
  2015年   24篇
  2014年   26篇
  2013年   38篇
  2012年   20篇
  2011年   46篇
  2010年   24篇
  2009年   57篇
  2008年   45篇
  2007年   70篇
  2006年   61篇
  2005年   59篇
  2004年   51篇
  2003年   39篇
  2002年   39篇
  2001年   32篇
  2000年   30篇
  1999年   43篇
  1998年   32篇
  1997年   29篇
  1996年   27篇
  1995年   26篇
  1994年   21篇
  1993年   27篇
  1992年   22篇
  1991年   14篇
  1990年   16篇
  1989年   14篇
  1988年   13篇
  1987年   17篇
  1986年   11篇
  1985年   8篇
  1984年   10篇
  1983年   5篇
  1982年   2篇
  1981年   13篇
  1980年   5篇
  1979年   6篇
  1978年   5篇
  1977年   2篇
  1973年   1篇
  1970年   2篇
排序方式: 共有1149条查询结果,搜索用时 687 毫秒
71.
A Paecilomyces fumosoroseus strain was mutagenized by u.v. Among 200 colonies, one mutant (M84), showed a large and stable chitin hydrolysis-halo. Glucose consumption and biomass production were similar for M84 and the parental strain. Chitinase was inducible by chitin and repressed by glucose in both strains but, when they were grown on minimal medium plus colloidal chitin as sole carbon source, the parental and M84 strains yielded 198 and 690 mol N-acetylglucosamine, respectively. This results indicate that the mutant strain synthesized a chitinase with a higher activity. Bioassays against Bemisia tabaci nymph, showed that M84 incited a 2-fold higher incidence of disease compared to the parental strain.  相似文献   
72.
Summary Virus-induced gene silencing (VIGS) is an extremely powerful tool for plant functional genomics. We used Tobacco rattle virus (TRV)-derived VIGS vectors expressed from binary vectors within Agrobacterium to induce RNA silencing in plants. Leaf infiltration is the most common method of agroinoculation used for VIGS but this method has limitations as it is laborious for large-scale screening and some plants are difficult to infiltrate. Here we have developed a novel and simple method of agroinoculation, called 'agrodrench', where soil adjacent to the plant root is drenched with an Agrobacterium suspension carrying the TRV-derived VIGS vectors. By agrodrench we successfully silenced the expression of phytoene desaturase (PDS), a 20S proteasome subunit (PB7) or Mg-protoporphyrin chelatase (Chl H) encoding genes in Nicotiana benthamiana and in economically important crops such as tomato, pepper, tobacco, potato, and Petunia, all belonging to the Solanaceae family. An important aspect of agrodrench is that it can be used for VIGS in very young seedlings, something not possible by the leaf infiltration method, which usually requires multiple fully expanded leaves for infiltration. We also demonstrated that VIGS functioned to silence target genes in plant roots. The agrodrench method of agroinoculation was more efficient than the leaf infiltration method for VIGS in roots. Agrodrench will facilitate rapid large-scale functional analysis of cDNA libraries and can also be applied to plants that are not currently amenable to VIGS technology by conventional inoculation methods.  相似文献   
73.
A novel acetyltransferase (Mpr1) found in Saccharomyces cerevisiae (strain 1278b) has been shown to specifically detoxify a proline analog, l-azetidine-2-carboxylic acid (A2C) in yeast cells [M. Shichiri et al. (2001) J Biol Chem 276: 41998–42002]. We investigated whether the yeast MPR1 gene would function similarly in a plant system and if its expression could confer resistance to proline analogs. The MPR1 gene coding sequence driven by two different constitutive promoters, with or without the 5- and 3-noncoding sequence from the MPR1 gene adjacent to the conventional NOS terminator, was transformed into tobacco (Nicotiana tabacum L. cv. Xanthi) plants via Agrobacterium tumefaciens infection. The presence of the yeast 5- and 3-noncoding sequences appeared to increase the likelihood of MPR1 gene expression in the transgenic plants. The kanamycin-selected transgenic plants with a high level of Mpr1 activity grew normally, and their progeny expressed acetyltransferase activity that could utilize A2C, azetidine-3-carboxylic acid and 4-hydroxy-l-proline as substrates. Resistance to A2C, but not to the other two analogs, was exhibited during leaf tissue culture and seed germination. The A2C toxicity to the wild-type plants was reversed by the addition of proline, suggesting that A2C acts as a proline analog. Our studies confirm that MPR1 can function in a similar fashion in tobacco as in yeast to detoxify the toxic proline analog A2C, so it could potentially be used as a new selectable marker for plant transformation. However, our attempts to utilize MPR1 as an efficient selectable marker gene for the A. tumefaciens-mediated transformation of tobacco were unsuccessful.Abbreviations A2C: l-Azetidine-2-carboxylic acid - A3C: Azetidine-3-carboxylic acid - Hyp: 4-Hydroxy-l-proline - hpt: Hygromycin phosphotransferase II - NPTII: Neomycin phosphotransferase II Communicated by H. Wang  相似文献   
74.
75.
76.
The midgut of the tobacco hornworm, Manduca sexta, actively secretes potassium ions. This can be measured as short-circuit current (Isc) with the midgut mounted in an Ussing chamber and superfused with a high-K+ saline containing as its major osmolyte 166 mM sucrose. Iso-osmotic substitution of sucrose by non-metabolisable compounds (mannitol, urea, NaCl and the polyethylene glycols 200, 400 and 600) led to a dramatic, though reversible, drop in the current. Acarbose, a specific inhibitor of invertase (sucrase) in vertebrates and insects, had no detectable influence on Isc. Unexpectedly, after replacing sucrose iso-osmotically with the saccharides glucose, fructose, trehalose or raffinose, the K+ current could no longer be supported. However, all osmolytes smaller than sucrose (except for NaCl), metabolisable or not, initiated an immediate, quite uniform but transient, increase in Isc by about 20%, before its eventual decline far below the control value. Hypo-osmotic treatment by omission of sucrose also transiently increased the K+ current. Small osmolytes substituted for sucrose caused no transient Isc stimulation when the epithelium had been challenged before with hypo-osmolarity; however, the eventual decline in Isc could not be prevented. Our data seem inconsistent with a role of sucrose as energiser or simple osmolyte. Rather, we discuss here its possible role as analogous to that of sucrose in lower eukaryotes or plants, as an extra- and/or intracellular compatible osmolyte that stabilises structure and/or function of the proteins implicated in K+ transport.Communicated by G. Heldmaier  相似文献   
77.
The effects of boron (B) deficiency on carbohydrate concentrations and the pattern of phenolic compounds were studied in leaves of tobacco plants (Nicotiana tabacum L.). Plants grown under B deficiency showed a notable increase in leaf carbohydrates and total phenolic compounds when compared to controls. The qualitative composition of phenolics was analyzed by HPLC-mass spectrometry. The level of caffeate conjugates (i.e., chlorogenic acid) increased in B-deficient plants. In addition, the accumulation of two caffeic acid amides (N-caffeoylputrescine and putative dicaffeoylspermidine) was observed.  相似文献   
78.
Tobacco mosaic virus (TMV) and Tomato mosaic virus (ToMV) are two closely related viruses in the genus Tobamovirus, but they induce obviously different sizes of necrotic lesions in tobacco plants containing the N gene. Comparison of the symptoms produced by TMV, ToMV and a chimaeric virus (T/OMP), in which the TMV movement protein (MP) gene was replaced by the ToMV MP gene, showed T/OMP caused necrotic lesions that were similar in size to those of ToMV in tobacco plants containing the N gene. The coat protein and MP of the three viruses accumulated in planta with similar levels, and the replication level of TMV and T/OMP in protoplasts also had no difference. Comparison of the activities of defense-related enzymes (PAL, POD and PPO) induced by the three viruses also showed that the variability of enzyme activity induced by T/OMP was similar to that induced by TMV, but different from that induced by ToMV. The results indicate that the size difference of necrotic lesions induced by TMV and ToMV in tobacco plants containing the N gene results from the functional difference of their MP genes.  相似文献   
79.
Roles of conserved methionine residues in tobacco acetolactate synthase   总被引:2,自引:0,他引:2  
Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine. ALS is the target of several classes of herbicides, including the sulfonylureas, the imidazolinones, and the triazolopyrimidines. The conserved methionine residues of ALS from plants were identified by multiple sequence alignment using ClustalW. The alignment of 17 ALS sequences from plants revealed 149 identical residues, seven of which were methionine residues. The roles of three well-conserved methionine residues (M350, M512, and M569) in tobacco ALS were determined using site-directed mutagenesis. The mutation of M350V, M512V, and M569V inactivated the enzyme and abolished the binding affinity for cofactor FAD. Nevertheless, the secondary structure of each of the mutants determined by CD spectrum was not affected significantly by the mutation. Both M350C and M569C mutants were strongly resistant to three classes of herbicides, Londax (a sulfonylurea), Cadre (an imidazolinone), and TP (a triazolopyrimidine), while M512C mutant did not show a significant resistance to the herbicides. The mutant M350C was more sensitive to pH change, while the mutant M569C showed a profile for pH dependence activity similar to that of wild type. These results suggest that M512 residue is likely located at or near the active site, and that M350 and M569 residues are probably located at the overlapping region between the active site and a common herbicide binding site.  相似文献   
80.
With the aim to enhance the plant vitamin E content, the barley gene encoding 4-hydroxyphenylpyruvate dioxygenase was overexpressed in tobacco plants under control of the 35S promoter. Transgenic lines have a higher capacity for homogentisate biosynthesis as evident by a more than 10-fold higher resistance towards the bleaching herbicide sulcotrione. Seeds from transgenic lines have an up to two-fold enhanced level of vitamin E without a change in the ratio of γ-tocopherol and γ-tocotrienol. While the vitamin E content is not affected in leaves, the level of plastoquinone is enhanced in leaves of transgenic lines during leaf senescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号