首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5728篇
  免费   320篇
  国内免费   234篇
  2023年   96篇
  2022年   142篇
  2021年   201篇
  2020年   125篇
  2019年   128篇
  2018年   117篇
  2017年   91篇
  2016年   122篇
  2015年   143篇
  2014年   227篇
  2013年   345篇
  2012年   199篇
  2011年   252篇
  2010年   170篇
  2009年   216篇
  2008年   223篇
  2007年   241篇
  2006年   206篇
  2005年   254篇
  2004年   186篇
  2003年   163篇
  2002年   189篇
  2001年   112篇
  2000年   84篇
  1999年   111篇
  1998年   118篇
  1997年   125篇
  1996年   90篇
  1995年   126篇
  1994年   83篇
  1993年   93篇
  1992年   75篇
  1991年   66篇
  1990年   64篇
  1989年   66篇
  1988年   67篇
  1987年   79篇
  1986年   48篇
  1985年   122篇
  1984年   116篇
  1983年   99篇
  1982年   114篇
  1981年   86篇
  1980年   59篇
  1979年   72篇
  1978年   36篇
  1977年   31篇
  1976年   28篇
  1974年   16篇
  1973年   23篇
排序方式: 共有6282条查询结果,搜索用时 515 毫秒
991.
There has been increasing interest in the mechanisms that mediate behavioral and physiological plasticity across individuals with similar genotypes. Some of the most dramatic plasticity is found within and between social insect castes. For example, Polistes wasp queens can nest alone, dominate a group of cooperative queens, or act as worker-like subordinates who rarely reproduce. Previous work suggests that condition-dependent endocrine responses may play a role in plasticity between castes in the hymenoptera. Here, we test whether condition-dependent endocrine responses influence plasticity within castes in the wasp Polistes dominulus. We experimentally manipulate juvenile hormone (JH) titers in nest-founding queens and assess whether JH mediates variation in behavior and physiology. JH generally increased dominance and fertility of queens, but JH's effects were not uniform across individuals. JH had a stronger effect on the dominance and fertility of large individuals and individuals with facial patterns advertising high quality than on the dominance and fertility of small individuals and those advertising low quality. These results demonstrate that JH has condition-dependent effects. As such, they clarify how JH can mediate different behaviors in well nourished queens and poorly nourished workers. Many Polistes queens nest cooperatively with other queens, so condition-dependent hormonal responses provide a mechanism for queens to adaptively allocate energy based on their probability of successfully becoming the dominant queen. Research on the endocrine basis of plasticity often focuses on variation in endocrine titers alone. However, differential endocrine responses are likely to be a widespread mechanism mediating behavioral and physiological plasticity.  相似文献   
992.
Male moths use sex pheromones to find their mating partners. In the moth, Agrotis ipsilon, the behavioral response and the neuron sensitivity within the primary olfactory centre, the antennal lobe (AL), to sex pheromone increase with age and juvenile hormone (JH) biosynthesis. By manipulating the JH level, we previously showed that JH controls this age-dependent neuronal plasticity, and that its effects are slow (within 2 days). We hypothesized that the hormonal effect might be indirect, and one neuromodulator candidate, which might serve as a mediator, is octopamine (OA). Here, we studied the effects of OA and an OA receptor antagonist, mianserin, on behavioral and AL neuron responses of mature and immature males during stimulation with sex pheromone. Our results indicate that, although OA injections enhanced the behavioral pheromone response in mature males, OA had no significant effect on behavior in immature males. However, mianserin injections decreased the behavioral response in mature males. AL neuron sensitivity increased after OA treatment in immature males, and decreased after mianserin treatment in mature males. Determination of OA levels in ALs of immature and mature males did not reveal any difference. To study the possible interactive effects of JH and OA, the behavioral pheromone response was analyzed in JH-deprived mature males injected with OA, and in immature males injected with fenoxycarb, a JH agonist, and mianserin. Results show that both JH and OA are necessary to elicit a behavioral response of A. ipsilon males to sex pheromone.  相似文献   
993.
Melanin-concentrating hormone (MCH) is a cyclic neuropeptide that has been initially characterized from a salmon pituitary extract and subsequently identified in various species from all classes of vertebrates. The present review summarizes the current knowledge regarding the neuroanatomical distribution of MCH-immunoreactive neurons in submammalian vertebrates. In all species examined, MCH-immunoreactive perikarya are confined to the hypothalamus, with the exception of the cyclostome Lampetra fluvialis and the lungfish Protopterus annectens, in which additional populations of MCH-immunoreactive cell bodies occur in the telencephalon, and the frogs Rana ridibunda and Rana esculenta which exhibit MCH-positive perikarya in thalamic nuclei. In teleosts, in the frog R. ridibunda and in the L. fluvialis, MCH is present in the classical hypothalamic-neurohypophysial system indicating that the peptide may play the role of a neurohormone. In other groups, MCH-immunoreactive nerve fibers are widely distributed in various brain regions suggesting that, in these species, MCH in the central nervous system may act as a neurotransmitter or/and a neuromodulator rather than a neurohormone.  相似文献   
994.
To date, there is a dearth of evidence to support functions for melanin-concentrating hormone (MCH) and melanin-concentrating hormone receptors (MCH-R) in mammalian skin physiology including pigmentation, inflammation and immune responses and skin cell proliferation. Much research is therefore still needed to define the roles of the hormone and its receptors in mammalian skin. This will be a crucial step to identifying pathogenic mechanisms that may involve the MCH/MCH-R system in the context of inflammatory and autoimmune skin diseases as well as skin cancers. The following review summarizes the studies which have been carried out to examine the expression and function of MCH and MCH-R in mammalian skin. Recent findings with regard to humoral immune responses to the MCH-R1 in patients with the skin depigmenting disease vitiligo are also discussed.  相似文献   
995.
Regulation of energy homeostasis in animals involves adaptation of energy intake to its loss, through a perfect regulation of feeding behavior and energy storage/expenditure. Factors from the periphery modulate brain activity in order to adjust food intake as needed. Particularly, “first order” neurons from arcuate nucleus are able to detect modifications in homeostatic parameters and to transmit information to “second order” neurons, partly located in the lateral hypothalamic area. These “second order” neurons have widespread projections throughout the brain and their proper activation leads them to a coordinated response associated to an adapted behavior. Among these neurons, melanin-concentrating hormone (MCH) expressing neurons play an integrative role of the various factors arising from periphery, first order neurons and extra-hypothalamic arousal systems neurons and modulate regulation of feeding, drinking and seeking behaviors. As regulation of MCH release is correlated to regulation of MCH neuronal activity, we focused this review on the electrophysiological properties of MCH neurons from the lateral hypothalamic area. We first reviewed the knowledge on the endogenous electrical properties of MCH neurons identified according to various criteria which are described. Then, we dealt with the modulations of the electrical activity of MCH neurons by different factors such as glucose, glutamate and GABA, peptides and hormones regulating feeding and transmitters of extra-hypothalamic arousal systems. Finally, we described the current knowledge on the modulation of MCH neuronal activity by cytokines and chemokines. Because of such regulation, MCH neurons are some of the best candidate to account for infection-induced anorexia, but also obesity.  相似文献   
996.
The objective of this study was to examine the impact of polymorphisms in the acyl-CoA:diacylglycerol acyltransferase ( DGAT1 ), leptin and growth hormone receptor genes on body energy (body condition score, total body energy content and cumulative effective energy balance) and blood metabolic traits (levels of β-hydroxybutyrate, glucose and non-esterified fatty acids), measured once before the first calving and then repeatedly throughout first lactation in 497 Holstein cows. The influence of the same polymorphisms on cow reproductive performance and health during the first and second lactations was also assessed. Several reproductive traits were considered including interval, conception and insemination traits, as well as incidence of metritis and reproductive problems. Genotyping was performed using PCR-RFLP ( DGAT1 , leptin ) or allele-specific PCR ( growth hormone receptor ). For each locus, the effect of allele substitution on body energy and blood metabolic traits was estimated using random regression models. The same effect on reproductive traits was assessed with single-trait mixed linear models. Significant ( P  <   0.05) effects on specific reproductive traits were observed. DGAT1 and growth hormone receptor alleles responsible for significant increases in milk production were found to have an adverse effect on reproduction, while the leptin allele responsible for significant increase in milk production was linked to marginally increased metritis frequency. Furthermore, the three studied loci were also found to significantly ( P  <   0.05) affect certain body energy and blood metabolic traits. Several associations are published for the first time, but these should be confirmed by other investigators before the polymorphisms are used in gene-assisted selection.  相似文献   
997.
Thyroid function ultimately depends on appropriate iodine supply to the gland. There is a complex series of checks and balances that the thyroid uses to control the orderly utilization of iodine for hormone synthesis. The aim of our study is to evaluate the mechanism underlying the effect of iodine excess on thyroid hormone metabolism. Based on the successful establishment of animal models of normal-iodine (NI) and different degrees of high-iodine (HI) intake in Wistar rats, the content of monoiodotyrosine (MIT), diiodotyrosine (DIT), T4, and T3 in thyroid tissues, the activity of thyroidal type 1 deiodinase (D1) and its (Dio1) mRNA expression level were measured. Results showed that, in the case of iodine excess, the biosynthesis of both MIT and DIT, especially DIT, was increased. There was an obvious tendency of decreasing in MIT/DIT ratio with increased doses of iodine intake. In addition, iodine excess greatly inhibited thyroidal D1 activity and mRNA expression. T3 was greatly lower in the HI group, while there was no significant difference of T4 compared with NI group. The T3/T4 ratio was decreased in HI groups, antiparalleled with increased doses of iodine intakes. In conclusion, the increased biosyntheses of DIT relative to MIT and the inhibition of thyroidal Dio1 mRNA expression and D1 activity may be taken as an effective way to protect an organism from impairment caused by too much T3. These observations provide new insights into the cellular regulation mechanism of thyroid hormones under physiological and pathological conditions.  相似文献   
998.
999.
Prolongation of cell survival through prevention of apoptosis is considered to be a significant factor leading to anabolic responses in bone. The current studies were carried out to determine the role of the small GTPase, RhoA, in osteoblast apoptosis, since RhoA has been found to be critical for cell survival in other tissues. We investigated the effects of inhibitors and activators of RhoA signaling on osteoblast apoptosis. In addition, we assessed the relationship of this pathway to parathyroid hormone (PTH) effects on apoptotic signaling and cell survival. RhoA is activated by geranylgeranylation, which promotes its membrane anchoring. In serum‐starved MC3T3‐E1 osteoblastic cells, inhibition of geranylgeranylation with geranylgeranyl transferase I inhibitors increased activity of caspase‐3, a component step in the apoptosis cascade, and increased cell death. Dominant negative RhoA and Y27632, an inhibitor of the RhoA effector Rho kinase, also increased caspase‐3 activity. A geranylgeranyl group donor, geranylgeraniol, antagonized the effect of the geranylgeranyl tranferase I inhibitor GGTI‐2166, but could not overcome the effect of the Rho kinase inhibitor. PTH 1‐34, a potent anti‐apoptotic agent, completely antagonized the stimulatory effects of GGTI‐2166, dominant negative RhoA, and Y27632, on caspase‐3 activity. The results suggest that RhoA signaling is essential for osteoblastic cell survival but that the survival effects of PTH 1‐34 are independent of this pathway. J. Cell. Biochem. 106: 896–902, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号