首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2349篇
  免费   67篇
  国内免费   25篇
  2023年   27篇
  2022年   12篇
  2021年   36篇
  2020年   78篇
  2019年   133篇
  2018年   131篇
  2017年   107篇
  2016年   94篇
  2015年   45篇
  2014年   136篇
  2013年   244篇
  2012年   32篇
  2011年   103篇
  2010年   51篇
  2009年   80篇
  2008年   83篇
  2007年   79篇
  2006年   84篇
  2005年   51篇
  2004年   50篇
  2003年   56篇
  2002年   49篇
  2001年   19篇
  2000年   15篇
  1999年   20篇
  1998年   23篇
  1997年   21篇
  1996年   16篇
  1995年   18篇
  1994年   22篇
  1993年   18篇
  1992年   25篇
  1991年   13篇
  1990年   7篇
  1989年   9篇
  1987年   8篇
  1986年   6篇
  1985年   55篇
  1984年   54篇
  1983年   21篇
  1982年   48篇
  1981年   43篇
  1980年   52篇
  1979年   50篇
  1978年   36篇
  1977年   25篇
  1976年   17篇
  1975年   10篇
  1974年   6篇
  1973年   16篇
排序方式: 共有2441条查询结果,搜索用时 31 毫秒
131.
We previously reported that the two peroxisome proliferator-activated receptor-α agonists, 9- and 13-oxo-octadecadienoic acids (oxo-ODAs), were found in the tomato fruit. However, their localization remains unknown. Herein, we showed that oxo-ODAs localize primarily in the fruit peel and their amount increases after the homogenization of the tomato fruit.  相似文献   
132.
From the leaves of Ageratina cylindrica, in addition to the described [(2S)‐2‐{4‐formyl‐5‐hydroxy‐2‐[(2‐methylpropanoyl)oxy]phenyl}oxiran‐2‐yl]methyl benzoate (cylindrinol A, 8 ), seven new thymol derivatives were isolated and named cylindrinols B – H ( 1 – 7 ). The structures of these compounds were established as (2‐{4‐(hydroxymethyl)‐2‐[(2‐methylpropanoyl)oxy]phenyl}oxiran‐2‐yl)methyl benzoate ( 1 ), (2‐{4‐formyl‐2‐[(2‐methylpropanoyl)oxy]phenyl}oxiran‐2‐yl)methyl benzoate ( 2 ), (2‐{4‐[(acetyloxy)methyl]‐2‐[(2‐methylpropanoyl)oxy]phenyl}oxiran‐2‐yl)methyl benzoate ( 3 ), [2‐(2‐[(2‐methylpropanoyl)oxy]‐4‐{[(2‐methylpropanoyl)oxy]methyl}phenyl)oxiran‐2‐yl]methyl benzoate ( 4 ), [2‐(5‐hydroxy‐2‐[(2‐methylpropanoyl)oxy]‐4‐{[(2‐methylpropanoyl)oxy]methyl}phenyl)oxiran‐2‐yl]methyl benzoate ( 5 ), 2‐{4‐(hydroxymethyl)‐2‐[(2‐methylpropanoyl)oxy]phenyl}prop‐2‐en‐1‐yl benzoate ( 6 ), and 2‐hydroxy‐2‐[2‐hydroxy‐4‐(hydroxymethyl)‐phenyl]‐3‐[(2‐methylpropanoyl)oxy]propyl benzoate ( 7 ), by spectroscopic means. Compounds 1 showed moderate antiprotozoal activity on both protozoa. Compounds 4 and 5 showed selectivity on Giardia lamblia trophozoites. All isolated compounds were less active than two antiprotozoal drugs, metronidazole and emetine, used as positive controls. Compound 5 exhibited a high inhibitory effect on hyperpropulsive movement of the small intestine in rats; its effect was best than loperamide, antidiarrheal drug used as a positive control.  相似文献   
133.
A facile capillary electrophoresis (CE) method for the separation of cinnamic acid and its derivatives (3,4-dimethoxycinnamic acid, 4-methoxycinnamic acid, isoferulic acid, sinapic acid, cinnamic acid, ferulic acid, and trans-4-hydroxycinnamic acid) using graphene quantum dots (GQDs) as additives with direct ultraviolet (UV) detection is reported. GQDs were synthesized by chemical oxidization and further purified by a macroporous resin column to remove salts (Na2SO4 and NaNO3) and other impurities. Transmission electron microscopy (TEM) indicated that GQDs have a relatively uniform particle size (2.3 nm). Taking into account the structural features of GQDs, cinnamic acid and its derivatives were adopted as model compounds to investigate whether GQDs can be used to improve CE separations. The separation performance of GQDs used as additives in CE was studied through variations of pH, concentration of the background electrolyte (BGE), and contents of GQDs. The results indicated that excellent separation can be achieved in less than 18 min, which is mainly attributed to the interaction between the analytes and GQDs, especially isoferulic acid, sinapic acid, and cinnamic acid.  相似文献   
134.
Four series of heterocyclic compounds 4-dihydropyrimidine-2-thiones 712 (series A), N,S-dimethyl-dihydropyrimidines 1318 (series B), hydrazine derivatives of dihydropyrimidine 1924 (series C), and tetrazolo dihydropyrimidine derivatives 2530 (series D), were synthesized and evaluated for in vitro urease inhibitory activity. The series B–D were first time examined for urease inhibition. Series A and C were found to be significantly active with IC50 values between 34.7–42.9 and 15.0–26.0 μM, respectively. The structure–activity relationship showed that the free S atom and hydrazine moiety are the key pharmacophores against urease enzyme. The kinetic studies of the active series A (712) and C (1924) were carried out to determine their modes of inhibition and dissociation constants Ki. Compounds of series A (712) and series C (1924) showed a mixed-type of inhibition with Ki values ranging between 15.76–25.66 and 14.63–29.42 μM, respectively. The molecular docking results showed that all the active compounds of both series have significant binding interactions with the active sites specially Ni-ion of the urease enzyme. Cytotoxicity of all series A–D was also evaluated against mammalian mouse fibroblast 3T3 cell lines, and no toxicity was observed in cellular model.  相似文献   
135.
1,3,4-Thiadiazole derivatives bearing Schiff base moieties were designed, synthesized, and their tyrosinase inhibitory activities were evaluated. Some compounds displayed potent tyrosinase inhibitory activities, especially, 4-(((5-mercapto-1,3,4-thiadiazol-2-yl)-imino)methyl)-2-methoxy-phenol (14) exhibited superior inhibitory effect to the other compounds with an IC50 value of 0.036 μM. The structure–activity relationships (SARs) were preliminarily discussed and docking studies showed compound 14 had strong binding affinity to mushroom tyrosinase. Hydroxy might be the active groups. The inhibition kinetics study revealed that compounds (13 and 14) inhibited tyrosinase by acting as uncompetitive inhibitors. The LD50 value of the compound 14 was 5000 mg/kg.  相似文献   
136.
(E)-3,4-dihydroxystyryl aralkyl sulfones and sulfoxides have been reported as novel multifunctional neuroprotective agents in previous studies, which as phenolic compounds display antioxidative and antineuroinflammatory properties. To further enhance the neuroprotective effects and study structure-activity relationship of the derivatives, we synthesized their acetylated derivatives, (E)-3,4-diacetoxystyryl sulfones and sulfoxides, and examined their neuroprotective effects in vitro models of Parkinson’s disease. The results indicate that (E)-3,4-diacetoxystyryl sulfones and sulfoxides can significantly inhibit kinds of neuron cell injury induced by toxicities, including 6-OHDA, NO, and H2O2. More important, they show higher antineuroinflammatory properties and similar antioxidative properties to corresponding un-acetylated compounds. Thus, we suggest that (E)-3,4-diacetoxystyryl sulfones and sulfoxides may have potential for the treatment of neurodegenerative disorders, especially Parkinson’s disease.  相似文献   
137.
Twelve 4-benzoyl-1-dichlorobenzoylthiosemicarbazides have been tested as potential antibacterials. All the compounds had MICs between 0.49 and 15.63?µg/ml toward Micrococcus luteus, Bacillus cereus, Bacillus subtilis and Staphylococcus epidermidis indicating, in most cases, equipotent or even more effective action than cefuroxime. In order to clarify if the observed antibacterial effects are universal, further research were undertaken to test inhibitory potency of two most potent compounds 3 and 11 on clinical isolates of Staphylococcus aureus. Compound 11 inhibited the growth of methicillin-sensitive S. aureus (MSSA) at MICs of 1.95–7.81?µg/ml, methicillin-resistant S. aureus (MRSA) at MICs of 0.49–1.95?µg/ml and MDR–MRSA at MIC of 0.98 and 3.90?µg/ml, respectively. Finally, inhibitory efficacy of 3 and 11 on planktonic cells and biofilms formation in clinical isolates of S. aureus and Haemophilus parainfluenzae was tested. The majority of cells in biofilm populations of MSSA and MRSA were eradicated at low level of 3, with MBICs in the range of 7.82–15.63?µg/ml.  相似文献   
138.
N-Protected amino acids (Gly, Ala and Phe) were reacted with amino substituted coumarin and quinolinone derivatives, leading to the corresponding N-protected amino acid–coumarin/quinolinone conjugates. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against various human (h) isoforms, such as hCA I, hCA II, hCA IV and hCA XII. The quinolinone conjugates were inactive as enzyme inhibitors, whereas the coumarins were ineffective hCA I/II inhibitors (KIs?>?50?μM) but were submicromolar hCA IV and XII inhibitors, with inhibition constants ranging between 92?nM and 1.19?μM for hCA IV, and between 0.11 and 0.79?μM for hCA XII. These coumarin derivatives, as many others reported earlier, thus show an interesting selective inhibitory profile for the membrane-bound over the cytosolic CA isoforms.  相似文献   
139.
Density functional theory calculation of the vibrational circular dichroism spectrum was used to assign the absolute configuration of an all‐carbon quaternary β‐stereocenter of a γ‐butyrolactone recently synthesized through an asymmetric organocatalytic tandem aldol/lactonization sequence. Comparison with the experimental spectrum is satisfactory, on account of the fact that spectroscopic features are weak due to the presence of multiple conformers. As a result, the (R) absolute configuration was assigned to the (+) optical isomer. Chirality 28:110–115, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   
140.
In this study we have designed p-phenylene diamine linked acridine derivative from our earlier reported quinoline–aminopiperidine hybrid MTB DNA gyrase inhibitors with aiming more potency and less cardiotoxicity. We synthesized thirty six compounds using four step synthesis from 2-chloro benzoic acid. Among them compound 4-chloro-N-(4-((2-methylacridin-9-yl)amino)phenyl)benzenesulphonamide (6) was found to be more potent with MTB DNA gyrase super coiling IC50 of 5.21 ± 0.51 μM; MTB MIC of 6.59 μM and no zHERG cardiotoxicity at 30 μM and 11.78% inhibition at 50 μM against mouse macrophage cell line RAW 264.7.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号