首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2545篇
  免费   223篇
  国内免费   180篇
  2023年   35篇
  2022年   47篇
  2021年   53篇
  2020年   56篇
  2019年   139篇
  2018年   110篇
  2017年   69篇
  2016年   58篇
  2015年   67篇
  2014年   121篇
  2013年   177篇
  2012年   87篇
  2011年   108篇
  2010年   61篇
  2009年   99篇
  2008年   84篇
  2007年   94篇
  2006年   116篇
  2005年   90篇
  2004年   74篇
  2003年   69篇
  2002年   77篇
  2001年   59篇
  2000年   39篇
  1999年   57篇
  1998年   47篇
  1997年   40篇
  1996年   42篇
  1995年   44篇
  1994年   45篇
  1993年   34篇
  1992年   35篇
  1991年   38篇
  1990年   27篇
  1989年   44篇
  1988年   26篇
  1987年   26篇
  1985年   40篇
  1984年   55篇
  1983年   43篇
  1982年   42篇
  1981年   37篇
  1980年   43篇
  1979年   24篇
  1978年   30篇
  1977年   28篇
  1976年   22篇
  1975年   21篇
  1974年   17篇
  1973年   22篇
排序方式: 共有2948条查询结果,搜索用时 171 毫秒
81.
R D Farley 《Tissue & cell》1984,16(4):577-588
The light and electron microscopes were used to examine possible hemocytopoietic tissue in the desert scorpion, Paruroctonus mesaensis. Results agree with earlier light microscopic studies that cells are released into the blood from the two lateral lymphoid organs and the supraneural gland. The former are sacciform structures attached by their anterior ends to the diaphragm. The supraneural gland forms the thickened wall of the supraneural artery in the mesosoma from the first to the third abdominal ganglia. The lateral lymphoid glands have an acellular stroma in which are embedded granular and agranular cells. The stroma is apparently formed by specialized cells which release membranous cell fragments that become the matrix of the gland. Cells are released into the body cavity from the periphery of the two organs. The supraneural gland has a fibrous stroma in which are embedded a variety of cell types. The cells appear to be released in greatest abundance into the blood in the lumen of the gland. The gland has cells with opaque granules (0.9-1.4 micron diameter) and agranular cells of variable shape. The most abundant cell, possibly the stem-cell for the others, is about 10 micron diameter and often has processes of variable length. In addition, muscle cells at various stages of differentiation are found at the inner margin of the gland. These cells have thick and thin myofilaments (24-32 and 5-8 nm diameter) and dense bodies which sometimes become organized into sarcomeres with Z-bands before the cells are released into the gland lumen. The function of these muscle cells is unknown, but possibly they contribute to the maintenance of blood pressure and the release of cells into the blood from the inner margin of the gland.  相似文献   
82.
Summary Ampullary organs were found in the epidermis of the paddle-fish Sorubim lima; they are distributed all over the skin surface of the fish but are particularly densely grouped in the head region and on the dorsal surface of the paddle. Histological and electron microscopical observations show that their structure is similar to the type of cutaneous ampullary organs characteristic of other Siluroidea. Composed of a relatively large mucus-filled ampulla, the organ possesses a short and narrow canal which leads to the outer epidermal surface. The wall of the ampulla is formed of several layers of flat epidermal cells. In general four sensory cells, each one surrounded by supporting cells, compose the sensory epithelium at the bottom of the ampulla. The inner surface of the sensory cells in contact with the ampullary mucus bears only microvilli. The contact between the nerve endings and the sensory cells show the characteristic structure of an afferent neuro-sensory junction. Two ampullae are innervated in some cases by the same afferent nerve fibre.The author expresses her gratitude to Dr. Szabo for his scientific advice during her stay in Gif sur Yvette  相似文献   
83.
Summary The ventricular surface of the subfornical organ of the frog is made up of ependymal cells with numerous apical microvilli, occasional cytoplasmic protrusions and many vacuoles projecting into the lumen of the third ventricle. Between these cells dendrites of cerebrospinal fluid-contacting neurons reach the ventricle to terminate in bulbous enlargements. In addition, flask-shaped encephalo-chromaffin cells, containing granulated vesicles and aggregates of filaments in their cytoplasm, project into the cerebrospinal fluid. Surrounding the centrally located capillaries are enlarged dendrites and axons of heterogeneous morphology, some of which appear to originate within the subfornical organ, intermingled with dendrites and axons of normal structure. The glial cells in this region, especially the microglial cells, often contain large lipofuscin inclusions, suggestive of degeneration and subsequent phagocytosis of some of the enlarged dendrites and axons. The normally scarce neurosecretory peptidergic axons become more evident and form typical Herring bodies in stalk-transected animals. Neuronal perikarya of varying morphology are predominantly located peripheral to the region of enlarged dendrites and axons. Supraependymal macrophages are particularly numerous on the subfornical organ.Abbreviations used CSF cerebrospinal fluid - SEM scanning electron microscope, scanning electron microscopy - SFO subfornical organ - TEM transmission electron microscope, transmission electron microscopy Supported, in part, by NIH grant NB 07492The skillful technical assistance of J.G. Linner and the secretarial assistance of Ann Gerdom are gratefully acknowledged. The SEM studies were made possible through a grant from the Graduate College of Iowa State University and the use of the SEM facility in the Department of Botany  相似文献   
84.
Summary The rhombencephalic recess, an ependymal organ, has been studied for the first time by light- and electron microscopy. It is situated mediosagittally on the floor of the rhomboid fossa at the level of the colliculus facialis. The recess and the superimposed tissue are built up by tanycytes, their apices being connected by tight junctions. HRP, injected into the c.s.f., does not penetrate into the intercellular clefts of the recess area. The recess area reveals a certain autonomy regarding its supply with arteries and capillaries. A bloodbrain barrier exists, but shows slight leakage in circumscribed areas as a result of intense transendothelial vesicular transport. The organization of the recess area is compared with that of other ependymal organs, especially circumventricular organs.The skilful technical assistance of Miss K. Bielenberg, Mrs. H. Prien, Mrs. E. Schöngarth and Mrs. H. Schöning is thankfully acknowledgedSupported by the Deutsche Forschungsgemeinschaft (Kr 569/1 and SFB 34/D4) and Stiftung Volkswagenwerk
  相似文献   
85.
Summary The gill secondary lamellae are generally covered with epithelial cells whose outer surfaces form numerous microvilli. The surface of the primary lamellae is characterised by microridges. A particular type of surface sculpturing seems to be associated with given cell boundaries.Further evidence for the derivation of the air tube and fans which guard its entrance by modification of the basic gill structure has been obtained from both the gross surface architecture and microstructure of the individual cell surfaces. Secondary lamellae are represented by stubby projections which generally have a biserial arrangement. The outer surfaces of the epithelia overlying the capillaries of these respiratory islets are coated with microvilli as in the secondary lamellae. On the other hand, the relatively smooth-surfaced lanes between groups of respiratory islets have a microridged surface similar to that of the primary gill lamellae.It is suggested that previous estimates of surface area, and consequently diffusing capacities of the air-breathing organ, have been low in view of the increased surface, due to both their gross and microstructure. Estimates for gill surface area may need very little correction as the spaces between the microvilli and microridges are probably filled with mucus under normal conditions.We thank Mr. John Clements for his excellent technical assistance and the Department of Botany, Bristol University for the use of their scanning electron microscope  相似文献   
86.
87.
Hydroxycinnamic acid (HCA) amides in fertile and cytoplasmic male sterile lines of maize were determined in reproductive organs, developing grains and cobs. HCA amides occurred in large amounts in the anthers of fertile plants (line F7N) and were absent from the anthers of cytoplasmic male sterile lines (lines F7T and F7C). Restoration of fertility was associated with the production of these compounds (line FC31). Considerable variations were observed in the concentrations of HCA amides at different stages of growth and grain maturation. Changes of HCA amides in the grains which were to produce sterile plants followed a pattern similar to that obtained with the grains which were to produce fertile plants. Accumulation of HCA amides was substantially higher in fertile lines whatever their genotype (F7N, FC31 and F7T x FC31) than in sterile lines. Marked changes occurred in the HCA amide content of embryo and endosperm during grain development. Many changes in HCA amides were observed in cobs during development and maturation, but no substantial differences could be observed between fertile and sterile lines.  相似文献   
88.
The interactions of cis- and trans-diammineplatinum compounds with 5′-GMP and 5′-dGMP in dilute aqueous solution at neutral pH were investigated by 1H nmr. In addition to the 1:2 Pt nucleotide complexes cis- and trans-Pt(NH3)2(GMP)2, it was possible to study the formation of the 1:1 Pt-nucleotide complexes with either one coordinated water or chloride ion. At 5°C GMP reacts with a stoichiometric amount of cis-diaquodiammine-platinum to yield cis-Pt(NH3)2(GMP) (H2O) as a sole reaction product. From the present results it is concluded that such a complex may play an important role as the initial reaction product between antitumor compounds like cis-Pt(NH3)2Cl2 and guanine in DNA in living organisms. The coupling constant 3J(H(1′)-H(2′)) of the H(1′) sugar proton in cis-Pt(NH3)2(GMP)2 is temperature dependent, indicating a conformational change in the sugar moiety.  相似文献   
89.
The oxidation of sheep hemoglobin, in both the oxygenated and deoxygenated forms, by cuprous ions have been studied by spectrophotometric and stopped-flow techniques. Mixing of both the oxy and deoxy forms with excess Cu2+ leads to the rapid oxidation of the iron atoms of all four of the hem groups of the tetrameric protein, followed by the slow formation of hemichromes (low spin FeIII forms of hemoglobin). Stopped-flow studies show that the oxidations follow simple monophasic kinetics with second-order rate constants of 65 and 310 M?1 sec?1 for the oxy and deoxy forms, respectively. Variable temperature studies yield Arrhenius activation energies of 43 for the oxy form and 113 kJ mole?1 for the deoxy form. For each form of the protein the activation energy is very similar to the activation enthalpy. While the deoxy form is characterized by an activation energy and enthalpy that is more than twice the corresponding value in the oxy form. The activation entropies show highly significant differences being ?128 e.u. and 136 e.u. at 25°C for the oxy and deoxy forms, respectively.  相似文献   
90.
Carbamate kinase from Streptococcus faecalis is inactivated by butanedione in borate buffer, which implies the presence of an essential arginine at the active site of the enzyme. The inactivation reaction is first order in [butanedione] and a replot of the inactivation rate data infers that one arginine is modified. The enzyme is protected against inactivation by ADP, ATP, the metal-nucleotides and carbamyl phosphate but not by carbamate. Amino acid analyses reveal that one of three arginines is modified by butanedione in the absence of protecting agents, and the binding of ADP to the enzyme prevents modification. Thus, analysis of the data suggest that (i) substrate binding to arginine and (ii) protein conformational changes at the active site are responsible for protection of an essential arginine against modification by butanedione.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号