首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   17篇
  国内免费   10篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   2篇
  2018年   7篇
  2017年   11篇
  2016年   9篇
  2015年   8篇
  2014年   5篇
  2013年   4篇
  2012年   3篇
  2011年   6篇
  2010年   5篇
  2009年   13篇
  2008年   22篇
  2007年   17篇
  2006年   14篇
  2005年   18篇
  2004年   13篇
  2003年   5篇
  2002年   13篇
  2001年   2篇
  2000年   3篇
  1999年   7篇
  1998年   8篇
  1997年   7篇
  1996年   7篇
  1995年   2篇
  1994年   6篇
  1993年   7篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1967年   1篇
排序方式: 共有271条查询结果,搜索用时 234 毫秒
71.
Temperature and mass dependency of insect metabolic rates are well known, while less attention has been given to other factors, such as age. Among insect species that experience seasonal variation in environmental conditions, such as in temperate latitudes, age may also have indirect effects on the metabolic rate. We examined the effect of age on the resting metabolic rate of Leptinotarsa decemlineata during 11 days after adult emergence by using flow-through respirometry. Age had a significant mass-independent effect on metabolic rate of beetles. A twofold increase in metabolic rate occurred during the first 2 days of adult life after which metabolic rate decreased with age relatively slowly. Ten day-old adult beetles had a metabolic rate similar to newly emerged beetles. The beetles have to be able to complete their development and prepare for overwintering during the relatively short favourable summer periods. Therefore, the observed pattern in metabolic rate may reflect physiological changes in the pre-diapause beetles adapted to temperate latitudes.  相似文献   
72.
Abstract. Both ecosystem carbon gain and nutrient availability are largely constrained by the magnitude and seasonality of precipitation in arid and semi‐arid ecosystems. We investigated the role of precipitation on ecosystem processes along an International Geosphere Biosphere Programme (IGBP) transect in temperate South America. The transect consists of a contiguous precipitation gradient in the southern region of Argentinean Patagonia (44–45° S), from 100 mm to 800 mm mean annual precipitation (MAP) and vegetation ranging from desert scrub to closed canopy forest. Gravimetric soil water content tracked changes in seasonal and annual precipitation, with a linear increase in soil water content with increasing MAP. Above‐ground net primary production (ANPP) increased linearly along the gradient of precipitation (ANPP =– 31.2 + 0.52 MAP, r2= 0.84, p= 0.028), supporting the relationship that carbon assimilation is largely controlled by available water in these sites, and was in general agreement with regional models of ANPP and rainfall. However, inorganic soil nitrogen was also highly linearly correlated with both MAP ([N] = 0.19 MAP – 32, r2= 0.96, p= 0.003) and ANPP (ANPP = 2.6 [Ninorganic]+59.4, r2= 0.79, p= 0.042), suggesting a direct control of precipitation on nitrogen turnover and an interaction with nitrogen availability in controlling carbon gain. The asynchrony of precipitation and changes in dominant vegetation may play important roles in determining the carbon‐nitrogen interactions along this rainfall gradient.  相似文献   
73.
Abstract. Cove forests of the Great Smoky Mountains are North American examples of old-growth temperate forest. Ecological attributes of seven stands were studied using one 0.6 - 1.0 ha plot per stand. Stand basal area (39 - 55 m2/ha) and biomass (326 - 471 Mg/ha) were high for temperate deciduous forest. Density ranged from 577 to 1075 stems/ha. All stands had a mixture of deciduous canopy species. Only rarely did a single species comprise more than half of the stand by density, basal area or biomass. Shade-intolerant species were present at low levels (1 - 5 % of total stand density). A wide range of stem diameters was characteristic of most species. However, some species lacked small stems, indicating discontinuous regeneration. Stands tended to have 10 - 20 tree species per ha and at least five species had biomass levels > 10 Mg/ha, indicating high evenness. Canopy gaps covered 10 % of the total area (2 - 21 % by stand). Gaps and conspecific patches of canopy trees > 0.05 ha in size were infrequent. Spatial analyses revealed a variety of patterns among species at inter-tree distances of 1 to 25 m. When all species were combined, juveniles showed aggregation, and adults were often hyperdispersed. Analyses for individual species confirmed that the mosaic of canopy species is influenced by non-random spatial processes. Adults of several species were aggregated at distances > 10 m. Juveniles of all major species exhibited aggregation. Several species exhibited regeneration near conspecific adults. This pattern suggested limited mobility for such species within the shifting mosaic. A diverse patchwork resulted despite the fact that many species did not exhibit segregation of adults and juveniles. Further understanding of patch dynamics and the potential for compositional steady state in cove forests requires long-term study with spatial data.  相似文献   
74.
75.
Photosynthetic-induction response and light-fleck utilization were investigated for the current-year seedlings of Quercus serrata, a deciduous tree found in temperate regions of Japan. The tree seedlings were grown under three light regimes: a constant low photosynthetic photon flux density (PFD) regime of 50 mol m–2 s–1, a constant high PFD regime of 500 mol m–2 s–1, and a lightfleck regime with alternated low (lasting 5 s) and high (lasting 35 s) PFD. The photosynthetic-induction response following a sudden increase of PFD from 50 to 500 mol m–2 s–1 exhibited two phases: an initial fast increase complete within 3–5 s, and a second slow increase lasting for 15–20 min. Induction times required to reach 50% and 90% of steady-state assimilation rates were significantly shorter in leaves from the constant low PFD than those from the high PFD regime. During the first 60–100 s, the ratio of observed integrated CO2 uptake to that predicted by assuming that a steady-state assimilation would be achieved instantaneously after the light increase was significantly higher for leaves from the low PFD regime than from the high PFD regime. Lightfleck utilization was examined for various durations of PFD of 500 mol m–2 s–1 on a background PFD of 50 mol m–2 s–1. Lightfleck utilization efficiency was significantly higher in low PFD leaves than in the high PFD leaves for 5-s and 10-s lightflecks, but showed no difference among different light regimes for 100-s lightflecks. The contribution of post-illumination CO2 fixation to total carbon gain decreased markedly with increasing lightfleck durations, but exhibited no significant difference among growth regimes. Photosynthetic performances of induction response and lightfleck utilization in leaves from the lightfleck regime were more similar to those in leaves from the low PFD regime. It may be the total daily PFD rather than PFD dynamics in light regimes that affects the characteristics of transient photosynthesis in Q. serrata seedlings.  相似文献   
76.
We conducted several experiments to determine a procedure for uniformly warming soil 5° C above ambient using a buried heating cable. These experiments produced a successful design that could: 1) maintain a temperature difference of 5° C over a wide range of environmental conditions; 2) reduce inter-cable temperture variability to ca. 1.5° C; 3) maintain a temperature difference of 5° C near the edges of the plot; and 4) respond rapidly to changes in the environment. In addition, this design required electrical power only 42% of the time. Preliminary measurements indicate that heating increased CO2 emission by a factor of ca. 1.6 and decreased the C concentration in the O soil horizon by as much as 36%. In addition, warming the soil accelerated the emergence and early growth of the wild lily of the valley (Maianthemum canadense Desf.). The relationship between CO2 flux and soil temperature derived from our soil warming experiment was consistent with data from other hardwood forests around the world. Since the other hardwood forests were warmed naturally, it appears that for soil respiration, warming the soil with buried heating cables differs little from natural, aboveground warming. By warming soil beyond the range of natural variability, a multi-site, long-term soil warming experiment may be valuable in helping us understand how ecosystems will respond to global warming.  相似文献   
77.
Summary Mass flow to the root surface is defined here as the concentration of an element in the bulk soil solution times the transpirational water uptake of the plant stand. The ratio of uptake of a mineral element to mass flow is called Mass Flow Coefficient (MFC). From an ecosystem study in a beech forestMFCs for 11 elements have been calculated from 3 years of monthly measurements. They amounted to 0.076, 0.086, 0.34, 0.77, 1.5, 1.7, 2.2, 2.9, 8.3, 11, and 120 for Al, Cl, Na, S, Fe, Mg, Mn, Ca, K, N and P respectively. It is concluded that this stand discriminates against Al, Cl and Na in ion uptake and takes up selectively Mn, Ca, K, N and P while for S, Fe and Mg mass flow transports almost the same amount to the root system as is taken up by the above ground stand.  相似文献   
78.
Bohrer KE  Friese CF  Amon JP 《Mycorrhiza》2004,14(5):329-337
The dynamics and role of arbuscular mycorrhizal fungi (AMF) have been well described in terrestrial ecosystems; however, little is known about how the dynamics of AMF are related to the ecology of wetland ecosystems. The seasonal dynamics of arbuscular mycorrhizal (AM) colonization within different wetland habitats were examined in this study to determine the factors that influence AM associations and to further assess the ecological role of AMF in wetlands. Fen and marsh habitats of four wetlands in west central Ohio were sampled monthly from March to September. AMF were found at all four sites for each month sampled and were present in all of the dominant plant species. A significant effect of month (P<0.001) on AM colonization did occur and was attributable to maximum colonization levels in the spring and minimum levels in late summer. This trend existed in all four wetlands in both fen and marsh habitats, regardless of variation in water levels, percent soil moisture, or available phosphorus levels. Because abiotic factors had minimal influence on AM colonization variation and the level of AM colonization paralleled plant growth patterns, we conclude that the AM seasonal dynamic was in response to plant phenology. Our data suggest that AM associations in temperate fen and marsh habitats are prevalent in the spring during new root and vegetative growth, even for plants experiencing flooded conditions. Evidence of an overriding AM seasonal trend indicates that future studies should include a seasonal component to better assess the role and distribution of AMF in wetland ecosystems.  相似文献   
79.
Coarse woody debris (CWD) may play a role in nutrient cycling in temperate forests through the leaching of solutes, including dissolved organic carbon (DOC) and dissolved organic nitrogen (DON), to the underlying soil. These fluxes need to be considered in element budget calculations, and have the potential to influence microbial activity, soil development, and other processes in the underlying soil, but studies on leaching from CWD are rare. In this study, we collected throughfall, litter leachate, and CWD leachate in situ at a young mixed lowland forest in NY State, USA over one year. We measured the concentrations of DOC, DON, NH4+, NO3, dissolved organic sulfur, SO42−, Cl, Al, Ca, K, Mg, Na, and P, estimated the flux of these solutes in throughfall, and measured the cover of CWD to gain some insight into possible fluxes from CWD. Concentrations of DOC were much higher in CWD leachate than in throughfall or litter leachate (15 vs. 0.7 and 1.6 mM, respectively), and greater than reported values for other leachates from within forested ecosystems. Other solutes showed a similar pattern, with inorganic N being an exception. Our results suggest that microsite scale fluxes of DOC from CWD may be An high relative to throughfall and litter leaching fluxes, but since CWD covered a relatively small fraction (2%) of the forest floor in our study, ecosystem scale fluxes from CWD may be negligible for this site. Soil directly beneath CWD may be influenced by CWD leaching, in terms of soil organic matter, microbial activity, and N availability. Concentrations of some metals showed correlations to DOC concentrations, highlighting the possibility of complexation by DOM. Several solute concentrations in throughfall, including DOC, showed positive correlations to mean air temperature, and fewer showed positive correlations in litter leachate, while negative correlations were observed to precipitation, suggesting both biological and hydrologic control of solute concentrations.  相似文献   
80.
Absorption of solar ultraviolet radiation (UVR) in aquatic ecosystems is primarily controlled by dissolved organic carbon (DOC). The role of iron (Fe) has also been suggested to contribute to UVR attenuation either directly or by interactions with DOC. Here we present findings from three laboratory manipulations of Fe and DOC on changes to the dissolved UVR absorption (ad,320) in a mid-latitude, dimictic, humic lake. In a laboratory simulation of lake turnover where anoxic, hypolimnetic water was oxygenated ad,320 significantly increased from 23.3 to 81.7 m−1 (p<0.0001). In a second laboratory experiment, addition of ferrous Fe to deoxygenated lake water increased ad,320 upon reoxygenation up to a concentration of 1.0 mg l−1 Fe, where a solubility saturation threshold may have been reached. In situ lake experiments were designed to simulate release of UV absorbing substances from anoxic sediments by placing 20-l carboys (open at the bottom, sealed at the top) onto the lake bottom. UV absorption at 320 nm increased over time for samples from within the experimental carboys. Finally, samples from several lake profiles and sediment experiments were analyzed for ad,320, total Fe, and DOC. UV absorption of dissolved substances at 320 nm and total Fe concentration both increased with depth, however DOC remained relatively constant over depth. Furthermore, total Fe and spectral slope showed tight coupling up to 1 mg l−1 total Fe in our survey analysis. Our results provide evidence for the importance of anoxic sediments as a source of ferrous iron and UV absorbing substances and suggest a role for ferric iron in increasing UVR and PAR absorption in lake water. We suggest that as this ferrous Fe oxidizes, its absorptive properties increase, and it may bind with dissolved organic matter, enabling it to remain in solution and thus increasing the dissolved absorption of lake water for extended periods of time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号