首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   5篇
  国内免费   5篇
  2022年   1篇
  2020年   6篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   7篇
  2014年   27篇
  2013年   26篇
  2012年   31篇
  2011年   53篇
  2010年   37篇
  2009年   8篇
  2008年   15篇
  2007年   6篇
  2006年   6篇
  2005年   15篇
  2004年   8篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   6篇
  1998年   2篇
  1997年   7篇
  1996年   4篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有288条查询结果,搜索用时 31 毫秒
51.
The advantages of bivalent hapten-bearing peptides for the detection oftumours pretargeted with bispecific antibodies have been demonstrated. Thistechnology is now considered for radioimmunotherapy and bivalent haptensdesigned to target 131I are needed. We thus synthesised aseries of tyrosine-containing peptides bearing the histamine-hemisuccinatehapten. These molecules were tested for their ability to bind simultaneouslytwo anti-hapten antibody molecules. One of these bivalent haptens, AG3.0,with a lysyl-d-tyrosyl-lysine connecting chain, was found to have optimalbinding characteristics and was thus selected for further investigations.AG3.0 was shown to efficiently deliver radioactive iodine to humancolorectal tumours grafted in nude mice using an anti-carcinoembryonicantigen×anti-histamine-hemisuccinate bispecific antibody. AG3.0 wasalso targeted to human B lymphoma cells pretargeted with a bispecificantibody specific for membrane IgM. In this system, bivalent ligands such asF(ab)2 or IgG are rapidly internalised and covalentlylinked radioactive iodine is released from target cells as a result ofintracellular catabolism. With the pretargeted iodine-labelled bivalenthapten, a fivefold increase in the intracellular activity retention time ascompared to 125I-labelled F(ab)2 and IgGwas observed. The radiolabelled hapten did not undergo any degradation afterinternalisation. These results have been confirmed in vivo with ananti-BCL1 IgM idiotype bispecific antibody and131I-labelled AG3.0. These reagents injected as a single 300µCi dose, 7 days after inoculation of 104BCL1 lymphoma cells in BALB/c mice, cured 14/16 of the animalsand the treatment was well tolerated. Comparatively, the same dose oflabelled IgG cured 13/16 of the mice but three mice died of haematologictoxicity. The same dose of labelled F(ab)2 orFab was completely inefficient. was completely inefficient. 131I-labelled bivalenthaptens are now used in phase I radioimmunotherapy clinical trials.  相似文献   
52.
Screening large populations for carriers of known or de novo rare single nucleotide polymorphisms (SNPs) is required both in Targeting induced local lesions in genomes (TILLING) experiments in plants and in screening of human populations. We previously suggested an approach that combines the mathematical field of compressed sensing with next‐generation sequencing to allow such large‐scale screening. Based on pooled measurements, this method identifies multiple carriers of heterozygous or homozygous rare alleles while using only a small fraction of resources. Its rigorous mathematical foundations allow scalable and robust detection, and provide error correction and resilience to experimental noise. Here we present a large‐scale experimental demonstration of our computational approach, in which we targeted a TILLING population of 1024 Sorghum bicolor lines to detect carriers of de novo SNPs whose frequency was less than 0.1%, using only 48 pools. Subsequent validation confirmed that all detected lines were indeed carriers of the predicted mutations. This novel approach provides a highly cost‐effective and robust tool for biologists and breeders to allow identification of novel alleles and subsequent functional analysis.  相似文献   
53.
 2B1 is a bispecific murine monoclonal antibody (bsmAb) targeting the c-erbB-2 and CD16 (FcγRIII) antigens. c-erbB-2 is over-expressed by a variety of adenocarcinomas, and CD16, the low-affinity Fcγ receptor for aggregated immunoglobulins, is expressed by polymorphonuclear leukocytes (PMN), natural killer (NK) cells and differentiated mononuclear phagocytes. 2B1 potentiates the in vitro lysis of c-erbB-2 over-expressing tumors by NK cells and macrophages. In this report, the interactions between 2B1 and PMN were investigated to assess the impact of these associations on in vitro 2B1-promoted tumor cytotoxicity by human NK cells. The peak binding of 2B1 to PMN was observed at a concentration of 10 μg/ml 2B1. However, 2B1 rapidly dissociated from PMN in vitro at 37°C in non-equilibrium conditions. This dissociation was not caused by CD16 shedding. When PMN were labeled with 125I-2B1 and incubated at 37°C and the supernatants examined by HPLC analysis, the Fab regions of dissociated 2B1 were not complexed with shed CD16 extracellular domain. While most of the binding of 2B1 to PMN was solely attributable to Fab-directed binding to FcγRIII, PMN-associated 2B1 also bound through Fcγ-domain/FcγRII interactions. 2B1 did not promote in vitro PMN cytotoxicity against c-erbB-2-expressing SK-OV-3 tumor cells. When PMN were coincubated with peripheral blood lymphocytes, SK-OV-3 tumor and 2B1, the concentration of 2B1 required for maximal tumor lysis was lowered. Although PMN may serve as a significant competitive binding pool of systemically administered 2B1 in vivo, the therapeutic potential of the targeted cytotoxicity properties of this bsmAb should not be compromised. Received: 3 May 1995 / Accepted: 6 February 1996  相似文献   
54.
A deletion between amino acid residues Ser(895) and Val(1075) in the carboxyl terminus of the human calcium receptor (hCaR), which causes autosomal dominant hypocalcemia, showed enhanced signaling activity and increased cell surface expression in HEK293 cells (Lienhardt, A., Garabédian, M. G., Bai, M., Sinding, C., Zhang, Z., Lagarde, J. P., Boulesteix, J., Rigaud, M., Brown, E. M., and Kottler, M. L. (2000) J. Clin. Endocrinol. Metab. 85, 1695-1702). To identify the underlying mechanism(s) for these increases, we investigated the effects of carboxyl tail truncation and deletion in hCaR mutants using a combination of biochemical and cell imaging approaches to define motifs that participate in regulating cell surface numbers of this G protein-coupled receptor. Our data indicate a rapid constitutive receptor internalization of the cell surface hCaR, accumulating in early (Rab7 positive) and late endosomal (LAMP1 positive) sorting compartments, before targeting to lysosomes for degradation. Recycling of hCaR back to the cell surface was also evident. Truncation and deletion mapping defined a 51-amino acid sequence between residues 920 and 970 that is required for targeting to lysosomes and degradation but not for internalization or recycling of the receptor. No singular sequence motif was identified, instead the required sequence elements seem to distribute throughout this entire interval. This interval includes a high proportion of acidic and hydroxylated amino acid residues, suggesting a similarity to PEST-like degradation motif (PESTfind score of +10) and several glutamine repeats. The results define a novel large PEST-like sequence that participates in the sorting of internalized hCaR routed to the lysosomal/degradation pathway that regulates cell surface receptor numbers.  相似文献   
55.
Macroautophagy (hereafter autophagy) is a degradative cellular pathway that protects eukaryotic cells from stress, starvation, and microbial infection. This process must be tightly controlled because too little or too much autophagy can be deleterious to cellular physiology. The phosphatidylinositol (PtdIns) 3-kinase Vps34 is a lipid kinase that regulates autophagy, but the role of other PtdIns kinases has not been examined. Here we demonstrate a role for PtdIns 4-kinases and PtdIns4P 5-kinases in selective and nonselective types of autophagy in yeast. The PtdIns 4-kinase Pik1 is involved in Atg9 trafficking through the Golgi and is involved in both nonselective and selective types of autophagy, whereas the PtdIns4P 5-kinase Mss4 is specifically involved in mitophagy but not nonselective autophagy. Our data indicate that phosphoinositide kinases have multiple roles in the regulation of autophagic pathways.  相似文献   
56.
The potassium channel Kv1.3 is an attractive pharmacological target for autoimmune diseases. Specific peptide inhibitors are key prospects for diagnosing and treating these diseases. Here, we identified the first scorpion Kunitz-type potassium channel toxin family with three groups and seven members. In addition to their function as trypsin inhibitors with dissociation constants of 140 nM for recombinant LmKTT-1a, 160 nM for LmKTT-1b, 124 nM for LmKTT-1c, 136 nM for BmKTT-1, 420 nM for BmKTT-2, 760 nM for BmKTT-3, and 107 nM for Hg1, all seven recombinant scorpion Kunitz-type toxins could block the Kv1.3 channel. Electrophysiological experiments showed that six of seven scorpion toxins inhibited ~50-80% of Kv1.3 channel currents at a concentration of 1 μM. The exception was rBmKTT-3, which had weak activity. The IC(50) values of rBmKTT-1, rBmKTT-2, and rHg1 for Kv1.3 channels were ~129.7, 371.3, and 6.2 nM, respectively. Further pharmacological experiments indicated that rHg1 was a highly selective Kv1.3 channel inhibitor with weak affinity for other potassium channels. Different from classical Kunitz-type potassium channel toxins with N-terminal regions as the channel-interacting interfaces, the channel-interacting interface of Hg1 was in the C-terminal region. In conclusion, these findings describe the first scorpion Kunitz-type potassium channel toxin family, of which a novel inhibitor, Hg1, is specific for Kv1.3 channels. Their structural and functional diversity strongly suggest that Kunitz-type toxins are a new source to screen and design potential peptides for diagnosing and treating Kv1.3-mediated autoimmune diseases.  相似文献   
57.
The signal recognition particle (SRP) is a universally conserved cellular machinery responsible for delivering membrane and secretory proteins to the proper cellular destination. The precise mechanism by which fidelity is achieved by the SRP pathway within the in vivo environment is yet to be understood. Previous studies have focused on the SRP pathway in isolation. Here we describe another important factor that modulates substrate selection by the SRP pathway: the ongoing synthesis of the nascent polypeptide chain by the ribosome. A slower translation elongation rate rescues the targeting defect of substrate proteins bearing mutant, suboptimal signal sequences both in vitro and in vivo. Consistent with a kinetic origin of this effect, similar rescue of protein targeting was also observed with mutant SRP receptors or SRP RNAs that specifically compromise the kinetics of SRP-receptor interaction during protein targeting. These data are consistent with a model in which ongoing protein translation is in constant kinetic competition with the targeting of the nascent proteins by the SRP and provides an important factor to regulate the fidelity of substrate selection by the SRP.  相似文献   
58.
The Parkinson disease-associated kinase Pink1 is targeted to mitochondria where it is thought to regulate mitochondrial quality control by promoting the selective autophagic removal of dysfunctional mitochondria. Nevertheless, the targeting mode of Pink1 and its submitochondrial localization are still not conclusively resolved. The aim of this study was to dissect the mitochondrial import pathway of Pink1 by use of a highly sensitive in vitro assay. Mutational analysis of the Pink1 sequence revealed that its N terminus acts as a genuine matrix localization sequence that mediates the initial membrane potential (Δψ)-dependent targeting of the Pink1 precursor to the inner mitochondrial membrane, but it is dispensable for Pink1 import or processing. A hydrophobic segment downstream of the signal sequence impeded complete translocation of Pink1 across the mitochondrial inner membrane. Additionally, the C-terminal end of the protein promoted the retention of Pink1 at the outer membrane. Thus, multiple targeting signals featured by the Pink1 sequence result in the final localization of both the full-length protein and its major Δψ-dependent cleavage product to the cytosolic face of the outer mitochondrial membrane. Full-length Pink1 and deletion constructs resembling the natural Pink1 processing product were found to assemble into membrane potential-sensitive high molecular weight protein complexes at the mitochondrial surface and displayed similar cytoprotective effects when expressed in vivo, indicating that both species are functionally relevant.  相似文献   
59.
Translocases of mitochondrial inner membrane (TIMs) are multiprotein complexes. The only Tim component so far characterized in kinetoplastid parasites such as Trypanosoma brucei is Tim17 (TbTim17), which is essential for cell survival and mitochondrial protein import. Here, we report that TbTim17 is present in a protein complex of about 1,100 kDa, which is much larger than the TIM complexes found in fungi and mammals. Depletion of TbTim17 in T. brucei impairs the mitochondrial import of cytochrome oxidase subunit IV, an N-terminal signal-containing protein. Pretreatment of isolated mitoplasts with the anti-TbTim17 antibody inhibited import of cytochrome oxidase subunit IV, indicating a direct involvement of the TbTim17 in the import process. Purification of the TbTim17-containing protein complex from the mitochondrial membrane of T. brucei by tandem affinity chromatography revealed that TbTim17 associates with seven unique as well as a few known T. brucei mitochondrial proteins. Depletion of three of these novel proteins, i.e. TbTim47, TbTim54, and TbTim62, significantly decreased mitochondrial protein import in vitro. In vivo targeting of a newly synthesized mitochondrial matrix protein, MRP2, was also inhibited due to depletion of TbTim17, TbTim54, and TbTim62. Co-precipitation analysis confirmed the interaction of TbTim54 and TbTim62 with TbTim17 in vivo. Overall, our data reveal that TbTim17, the single homolog of Tim17/22/23 family proteins, is present in a unique TIM complex consisting of novel proteins in T. brucei and is critical for mitochondrial protein import.  相似文献   
60.
目的本基因工程大肠杆菌DH5α/pCW-PL-XE-TNFαm2所表达的靶向融合蛋白XE-TNFαm2已被初步证明具有用于清除艾滋病患者体内HIV病毒的前景。其目的蛋白表达水平为32%~36%细胞总蛋白。本研究旨在验证其遗传稳定性。方法工程菌株DH5α/pCW-PL-XE-TNFαm分别在LBAmp+与LBAmp-二种固体培养基上逐日单菌落划线传代,32℃培养过夜。每间隔十代运用一般温控表达技术,确定其XE-TNFαm2的蛋白含量,最后比较分析各代之间目的蛋白(20.3 kDa)表达水平的差异情况。结果该重组基因工程菌连续传100代后XE-TNFαm2的蛋白表达水平没有明显差异(P〉0.05);只是在上述两种情况下传至100代后将其置于4℃保藏4、5、6个月,其目的蛋白表达水平有8%的下降。本载体质粒含有的CIts857序列、PL启动子与T1T2末端终止序列,是确保目的基因稳定高表达的3个关键元件。结论本研究结果证明该工程菌DH5α/pCW-PL-XE-TNFαm2具有良好的遗传稳定性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号