首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12550篇
  免费   688篇
  国内免费   413篇
  2023年   134篇
  2022年   136篇
  2021年   295篇
  2020年   270篇
  2019年   286篇
  2018年   362篇
  2017年   257篇
  2016年   237篇
  2015年   335篇
  2014年   545篇
  2013年   753篇
  2012年   419篇
  2011年   472篇
  2010年   423篇
  2009年   524篇
  2008年   657篇
  2007年   610篇
  2006年   649篇
  2005年   551篇
  2004年   525篇
  2003年   477篇
  2002年   456篇
  2001年   315篇
  2000年   296篇
  1999年   302篇
  1998年   292篇
  1997年   258篇
  1996年   247篇
  1995年   256篇
  1994年   228篇
  1993年   246篇
  1992年   198篇
  1991年   188篇
  1990年   192篇
  1989年   151篇
  1988年   138篇
  1987年   120篇
  1986年   94篇
  1985年   99篇
  1984年   142篇
  1983年   84篇
  1982年   87篇
  1981年   83篇
  1980年   70篇
  1979年   54篇
  1978年   45篇
  1977年   26篇
  1976年   24篇
  1975年   12篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
991.
Pastukhov AV  Ropson IJ 《Proteins》2003,53(3):607-615
We studied the equilibrium binding of two hydrophobic fluorescent dyes, ANS and bisANS, to four members of a family of intracellular lipid-binding proteins: IFABP, CRABP I, CRABP II, and ILBP. The spectral and binding parameters for the probes bound to the proteins were determined. Typically, there was a single binding site on each protein for the ligands. However, IFABP cooperatively bound a second bisANS molecule in the binding pocket. Comparative analysis of affinities and spectral characteristics for the two probes allowed us to examine the contributions of electrostatic and hydrophobic interactions to the binding process, and to address some aspects of the internal structure of the studied proteins.  相似文献   
992.
Attempts at predicting the relative axial alignments of fibrous protein molecules in filamentous structures have relied upon representing the (multichain) molecular structure by a one-dimensional sequence of amino acids. Potential intermolecular ionic and apolar interactions were counted and determined as a function of the relative axial stagger between the molecules. No attempts were made to consider the azimuthal aspect of the interacting molecules and neither were apolar or ionic energy terms used. Surprisingly, this simple approach proved remarkably informative and yielded accurate predictions of the axial periods present. However, a more comprehensive analysis involving the energetics of aggregation taking due regard for the relative azimuths of the molecules as well as their separation should decrease the noise level in the calculations and reveal other pertinent information. Toward that end, we have modeled the interaction between two alpha-helical coiled-coil segments in intermediate filament molecules (1B segments from human vimentin). The relative axial alignment and polarity of the molecules is already known from detailed crosslinking studies and this provides a criterion against which the success (or otherwise) of the modeling can be judged. The results confirm that an antiparallel alignment of two 1B segments is preferred over any of the parallel options (as observed experimentally). The calculated axial alignment, however, is not identical to that observed from detailed crosslinking studies indicating that other parts of the molecule (probably the head and tail domains as well as other coiled-coil segments) have a crucial role in determining the precise mode of axial aggregation. The results also show that the apolar interactions seem to be significantly less important in the alignment process than the ionic ones. This is consistent with the observation of a well-defined period in the linear disposition of the charged (but not apolar) residues along the length of the outer surface of the vimentin molecule.  相似文献   
993.
Spectroscopic methods were used to monitor the unfolding of the leucine specific (LS) and the leucine-isoleucine-valine (LIV) binding proteins. Our studies indicate that ligand-free protein undergoes a simple two-state unfolding, whereas the protein-ligand complex undergoes a three-state unfolding model. Ligand binding causes significant stabilization of both proteins. There is correlation between ligand hydrophobicity and protein stabilization: the most hydrophobic ligand, isoleucine, causes the most significant stabilization of LIV protein. A disulfide bond present in N-domain of both proteins makes a large contribution to the protein stability of these periplasmic binding receptors.  相似文献   
994.
Amphiphilic proteomic analysis was carried out on the ITMI (International Triticae Mapping Population) population resulting from a cross between "Synthetic", i.e.: "W7984" and "Opata". Out of a total of 446 spots, 170 were specific to either of the two parents, and 276 were common to both. Preliminary analysis, which was performed on 80 progenies (Amiour et al. 2002a), was completed here using a total of 101 selfed lines. Seventy two Loci of amphiphilic spots placed at LOD = 5 were conclusively assigned to15 chromosomes. Some spots mapped during the first analysis were eliminated because of the significant distortion segregation observed in the second analysis. Group-1 chromosomes had by far the greatest number of mapped spots (51). Using the Quantitative Trait Loci (QTLs) approach, analysis of the quantitative variation of each spot revealed that 96 spots out of the 170 specific ones showed at least one Protein Quantity Locus (PQL). These PQLs were distributed throughout the genome. With Matrix Laser Desorption Ionisation Time Of Flight (MALDI-TOF) spectrometry and Database interrogation, a total of 93 specific and 41 common spots were identified. This enabled us to show that the majority of these proteins are associated with membranes and/or play a role in plant defence against external invasions. Using multiple-regression analysis, other amphiphilic proteins, in addition to puroindolines, were shown to be involved in variation in kernel hardness in the ITMI population.Communicated by J.W. Snape  相似文献   
995.
Abundant lectin-related proteins found in common beans (Phaseolus vulgaris L.) have been shown to confer resistance against the larvae of a number of bruchid species. Genes encoding for these proteins are members of the lectin multigene family, the most representative components being arcelins, phytohemagglutinins and -amylase inhibitors. Arcelins have been described in seven variants, some of which are resistance factors against the Mexican bean weevil (Zabrotes subfasciatus), a major bean predator. In this study the isolation and sequencing of arcelin genes from wild P. vulgaris genotypes, containing Arc3 and Arc7 variants, is reported, and similarities and evolutionary relationships among the seven known arcelins are described. The evolutionary analysis shows that arcelins 3 and 4 cluster together and are the most-ancient variants. A duplication event gave rise to two additional clusters, one comprising arcelins 1, 2 and 6 and separated from the cluster of arcelins 5 and 7. A multiple number of arcelin genes were found in arcelin 3 and 4 genotypes indicating that more than one type of arcelin gene may be present in the same locus. Some of these sequences are reminiscent of ancient duplication events in arcelin evolution demonstrating that arcelins have evolved through multiple duplications. A further aim of this paper was to better understand and describe the evolution of the entire lectin multigene family. Beside arcelins, a number of other types of sequences, such as putative lectins and sequences not easily classifiable, were found in genotypes containing Arc3 and Arc4. These results, together with the evolutionary analysis, indicate that lectin loci are quite complex and confirm their origin by multiple duplication events.Communicated by J.S. Heslop-HarrisonL. Lioi and F. Sparvoli contributed equally to the work  相似文献   
996.
Exchangeable apolipoproteins have been the subject of intense biomedical investigation for decades. However, only in recent years the elucidation of the three-dimensional structure reported for several members of the apolipoprotein family has provided insights into their functions at a molecular level for the first time. Moreover, the role of exchangeable apolipoproteins in several cellular events distinct from lipid metabolism has recently been described. This review summarizes these contributions, which have not only allowed the identification of the apolipoprotein domains that determine substrate binding specificity and/or affinity but also the plausible molecular mechanism(s) involved.  相似文献   
997.
Two folate binding proteins are present in human milk; one of 27 kDa is a cleavage product of the other one (100 kDa) which possesses a hydrophobic membrane anchor. A drastic change of radioligand binding characteristics and appearance of aggregated weak-radioligand affinity forms on gel filtration occurred at low concentrations of both proteins in the absence of Triton X-100 or other amphiphatic substances, e.g. cetyltrimethylammonium and phospholipids. These findings are consistent with a model predicting association between unliganded and liganded monomers resulting in weak-ligand affinity dimers. Amphiphatic substances form micelles and lipid bilayers which could separate hydrophobic unliganded monomers from hydrophilic liganded monomers (monomers become hydrophilic in the liganded state) thereby preventing association between these monomeric forms prevailing at low concentrations of the protein. Bio-Gel P-300 chromatography of the 27 kDa protein revealed a pronounced polymerization tendency, which diminished with decreasing protein concentrations, however, not in the presence of cetyltrimethylammonium. The data could have some bearings on observations indicating that naturally occurring amphiphatic substances, cholesterol and phospholipids, are necessary for the important clustering of membrane folate receptors.  相似文献   
998.
Bacillus thuringiensis, the entomopathogenic bacteria from the Bacillus cereus group, harbors numerous extrachromosomal molecules whose sizes vary from 2 to more than 200kb. Apart from the genes coding for the biopesticide delta-endotoxins located on large plasmids, little information has been obtained on these plasmids and their contribution to the biology of their host. In this paper, we embarked on a detailed comparison of six small rolling-circle replicating (RCR) plasmids originating from two major B. thuringiensis strains. The complete nucleotide sequences of plasmid pGI1, pGI2, pGI3, pTX14-1, pTX14-2, and pTX14-3 have been obtained and compared. Replication functions, comprising, for each plasmid, the gene encoding the Rep-protein, double-strand origin of replication (dso), single-strand origin of replication (sso), have been identified and analyzed. Two new families, or homology groups, of RCR plasmids originated from the studies of these plasmids (Group VI based on pGI3 and Group VII based on pTX14-3). On five of the six plasmids, loci involved in conjugative mobilization (Mob-genes and origin of transfer (oriT)) were identified. Plasmids pTX14-1, pTX14-2, and pTX14-3 each harbor an ORF encoding a polypeptide containing a central domain with repetitive elements similar to eukaryotic collagen (Gly-X-Y triplets). These genes were termed bcol for Bacillus-collagen-like genes.  相似文献   
999.
A proteomics approach was evaluated for analysis of photosyntheis-related proteins that are characteristic of chromatophores, particles derived from purple phototrophic bacterial intracytoplasmic membranes. Proteins of purified chromatophores from Rhodopseudomonas palustris were solubilized and digested with trypsin, to create a collection of peptides that were fractionated by liquid chromatography. Peptide sequences were determined and assigned to specific proteins by analysis of tandem mass spectra of peptides, and comparison to a library derived from the recently determined R. palustris genome sequence. A total of 300 proteins were detected with a probability value >/=0.9, and the number of proteins detected increased to 345 when the minimum probability value was reduced to 0.5. Membrane-integral proteins of the reaction center, cytochrome b/c (1), light-harvesting and ATPase complexes were used as controls to assess how well this approach performs with hydrophobic proteins. New genes were identified, and tentatively designated as encoding photosynthesis-related proteins. We conclude that this approach is a powerful method to evaluate the possible existence of new photosynthesis-related proteins (and genes), although alternative methods are needed to evaluate the exact functions of newly discovered genes.  相似文献   
1000.
Proteomics is a very powerful approach to link the information contained in sequenced genomes, like Arabidopsis, to the functional knowledge provided by studies of plant cell compartments, such as chloroplast envelope membranes. This review summarizes the present state of proteomic analyses of highly purified spinach and Arabidopsis envelope membranes. Methods targeted towards the hydrophobic core of the envelope allow identifying new proteins, and especially new transport systems. Common features were identified among the known and newly identified putative envelope inner membrane transporters and were used to mine the complete Arabidopsis genome to establish a virtual plastid envelope integral protein database. Arabidopsis envelope membrane proteins were extracted using different methods, that is, chloroform/methanol extraction, alkaline or saline treatments, in order to retrieve as many proteins as possible, from the most to the less hydrophobic ones. Mass spectrometry analyses lead to the identification of more than 100 proteins. More than 50% of the identified proteins have functions known or very likely to be associated with the chloroplast envelope. These proteins are (a) involved in ion and metabolite transport, (b) components of the protein import machinery and (c) involved in chloroplast lipid metabolism. Some soluble proteins, like proteases, proteins involved in carbon metabolism or in responses to oxidative stress, were associated with envelope membranes. Almost one third of the newly identified proteins have no known function. The present stage of the work demonstrates that a combination of different proteomics approaches together with bioinformatics and the use of different biological models indeed provide a better understanding of chloroplast envelope biochemical machinery at the molecular level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号