首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3839篇
  免费   209篇
  国内免费   317篇
  2023年   16篇
  2022年   41篇
  2021年   54篇
  2020年   45篇
  2019年   60篇
  2018年   72篇
  2017年   104篇
  2016年   116篇
  2015年   82篇
  2014年   120篇
  2013年   167篇
  2012年   107篇
  2011年   168篇
  2010年   120篇
  2009年   255篇
  2008年   284篇
  2007年   277篇
  2006年   253篇
  2005年   182篇
  2004年   188篇
  2003年   147篇
  2002年   95篇
  2001年   104篇
  2000年   91篇
  1999年   98篇
  1998年   93篇
  1997年   81篇
  1996年   80篇
  1995年   71篇
  1994年   67篇
  1993年   63篇
  1992年   58篇
  1991年   61篇
  1990年   54篇
  1989年   45篇
  1988年   40篇
  1987年   39篇
  1986年   34篇
  1985年   35篇
  1984年   47篇
  1983年   26篇
  1982年   53篇
  1981年   42篇
  1980年   41篇
  1979年   37篇
  1978年   15篇
  1977年   15篇
  1976年   6篇
  1974年   3篇
  1973年   6篇
排序方式: 共有4365条查询结果,搜索用时 15 毫秒
61.
A new guillotine thermocouple psychrometer was used to make continuous measurements of water potential before and after the excision of elongating and mature regions of darkgrown soybean (Glycine max L. Merr.) stems. Transpiration could not occur, but growth took place during the measurement if the tissue was intact. Tests showed that the instrument measured the average water potential of the sampled tissue and responded rapidly to changes in water potential. By measuring tissue osmotic potential ( s ), turgor pressure ( p ) could be calculated. In the intact plant, s and p were essentially constant for the entire 22 h measurement, but s was lower and p higher in the elongating region than in the mature region. This caused the water potential in the elongating region to be lower than in the mature region. The mature tissue equilibrated with the water potential of the xylem. Therefore, the difference in water potential between mature and elongating tissue represented a difference between the xylem and the elongating region, reflecting a water potential gradient from the xylem to the epidermis that was involved in supplying water for elongation. When mature tissue was excised with the guillotine, s and p did not change. However, when elongating tissue was excised, water was absorbed from the xylem, whose water potential decreased. This collapsed the gradient and prevented further water uptake. Tissue p then decreased rapidly (5 min) by about 0.1 MPa in the elongating tissue. The p decreased because the cell walls relaxed as extension, caused by p , continued briefly without water uptake. The p decreased until the minimum for wall extension (Y) was reached, whereupon elongation ceased. This was followed by a slow further decrease in Y but no additional elongation. In elongating tissue excised with mature tissue attached, there was almost no effect on water potential or p for several hours. Nevertheless, growth was reduced immediately and continued at a decreasing rate. In this case, the mature tissue supplied water to the elongating tissue and the cell walls did not relax. Based on these measurements, a theory is presented for simultaneously evaluating the effects of water supply and water demand associated with growth. Because wall relaxation measured with the psychrometer provided a new method for determining Y and wall extensibility, all the factors required by the theory could be evaluated for the first time in a single sample. The analysis showed that water uptake and wall extension co-limited elongation in soybean stems under our conditions. This co-limitation explains why elongation responded immediately to a decrease in the water potential of the xylem and why excision with attached mature tissue caused an immediate decrease in growth rate without an immediate change in p Abbreviations and symbols L tissue conductance for water - m wall extensibility - Y average yield threshold (MPa) - o water potential of the xylem - p turgor pressure - s osmotic potential - w water potential of the elon gating tissue  相似文献   
62.
The dynamics of enzyme cooperativity are examined by studying a homotropic dimeric enzyme with identical reaction sites, both of which follow irreversible Michaelis-Menten kinetics. The problem is approached via scaling and linearization of the governing mass action kinetic equations. Homotropic interaction between the two sites are found to depend on three dimensionless groups, two for the substrate binding step and one for the chemical transformation. The interaction between the two reaction sites is shown capable of producing dynamic behavior qualitatively different from that of a simple Michaelis-Menten system; when the two sites interact to increase enzymatic activity over that of two independent monomeric enzymes (positive cooperativity) damped oscillatory behavior is possible, and for negative cooperativity in the chemical transformation step a multiplicity of steady states can occur, with one state unstable and leading to runaway behavior. Linear analysis gives significant insight into system dynamics, and their parametric sensitivity, and a way to identify regions of the parameter space where the approximate quasi-stationary and quasi-equilibrium analyses are appropriate.  相似文献   
63.
Four species of heath, occurring in the heathlands of Brittany, are compared regarding their water relations: Calluna vulgaris, Erica ciliaris, E. cinerea and E. tetralix. E. cinerea is unable to establish itself in wet heathland because of its intolerance of prolonged waterlogging. It is the Erica species best adapted to dry habitat conditions in Brittany. E. ciliaris canot establish itself in dry heathland and is less tolerant of waterlogging than E. tetralix. E. tetralix is the species best adapted to wet heathland, being tolerant of waterlogging, but can also establish itself in dry heathland. Of the three E. species it has the widest ecological range. Calluna is tolerant of both wet and dry conditions and has a wide ecological range. E. cinerea is typical of dry- and E. tetralix of wet heathland. Although both species did best in moist aerated soil in experimental cultures, neither is abundant in mesophilic heaths where E. ciliaris is dominant. One explanation may be competition for aerial space. E. cinerea and E. tetralix both have an upright growth, whereas E. ciliaris rapidly adopts a straggling bushy habit, with long rooting branches. E. ciliaris thus establishes large interpenetrating clumps. With increasing dryness E. ciliaris disappears and may be replaced by E. cinerea and, with increasing wetness and especially waterlogging, E. tetralix will take over.  相似文献   
64.
L. Lalonde  J. D. Bewley 《Planta》1986,167(4):504-510
As germination of axes of Pisum sativum L. seeds progressed, profound quantitative and qualitative changes occurred in the patterns of protein synthesis. This was shown by fluorography of gels following two-dimensional polyacrylamide gel electrophoresis separation of [35S]methioninelabelled proteins. The effects of desiccation during germination on these in-vivo protein-synthesis patterns were followed. Desiccation differentially affected the synthesis of proteins. Usually, however, upon rehydration following desiccation the types of proteins being synthesized were recognizable as those synthesized earlier during imbibition of control, once-imbibed axes: seeds imbibed for 8 h, and then dried, did not recommence synthesis of proteins typical of 8-h-imbibed control seeds, but rather of 4-h-imbibed control seeds. Seeds imbibed for 12 h, and then dried and rehydrated, synthesized proteins typical of 4-h-and 8-h-control seeds. Thus drying of germinating pea axes caused the proteinsynthesizing mechanism to revert to producing proteins typical of earlier stages of imbibition. Drying during germination never caused the seed to revert to the metabolic status of the initial mature dry state, however.Abbreviation DR dried and rehydrated  相似文献   
65.
Y Dupont  R Pougeois 《FEBS letters》1983,156(1):93-98
The sarcoplasmic reticulum Ca2+-ATPase catalyses a reversible calcium transport coupled to phosphate transfer between ATP and water. It has been proposed [Biochemistry (1980) 19, 4252-4261] that the reactivity of the acyl-phosphate bond is dependent on the water activity within the catalytic site. We have tested this hypothesis and found that the polarity in the free catalytic site is lower than that of water, a further and large decrease is observed when the enzyme is phosphorylated by Pi. Phosphorylation by ATP indicates that this polarity change is specifically associated with the formation of the ADP-insensitive phosphoenzyme.  相似文献   
66.
Summary In south-east Australia, where radiata pine (Pinus radiata D. Don) is grown on sandy soils low in nutrients and short of water, early establishment, and rapid growth to canopy closure lead to increased productivity. At this stage demands for nutrients and water are high, and trees respond vigorously to silvicultural inputs.For several months after transplanting in winter roots are confined within a narrow planting wedge, low temperature restricts new root growth and slows recovery from water stress in plants. From spring, depending upon the configuration and vigour of the roots transplanted, lateral roots extend radially throughout the soil.Although there were small decreases in concentration of roots radially from the stems of very young trees, such spatial differences disappeared between ages 2 and 3, so that rooting density was independent of distance from the stem. The pattern of vertical distribution of lateral roots was not influenced by age and 80–90% of the lateral roots were within the top 30 cm soil. Roots developed rapidly as the trees grew towards canopy closure, but in general the rooting densities of these pines are among the lowest reported for plants. In rapidly growing trees approaching canopy closure, the secondary thickening of the lateral roots was sufficient to double the weight of roots without altering root length.Knowledge about root growth and root configuration during the early phase of plantation development will assist management decisions where intensive silviculture is practiced, and hence ensure the most efficient use of nutrients and water.  相似文献   
67.
The growth,activity and distribution of the fruit tree root system   总被引:3,自引:0,他引:3  
D. Atkinson 《Plant and Soil》1983,71(1-3):23-35
Summary The paper reviews information, much of it obtained from studies using the East Malling root observation laboratories, on the growth and development of the fruit tree root system. The production of new white root varies from year-to-year, generally being highest in the early years. As trees age, woody roots constitute an increasing fraction of total root length although the contribution made by new root growth to the total root length of established trees is also affected by soil management, being higher for trees under grass than under herbicide. Soil management also affects the balance of short (lateral) to long (extension) roots; under grass there are more lateral roots.Calculation of the rate of water uptake per unit root length needed at various times in the year to meet transpirational demand, suggests that woody roots, which recent experimental work has shown to be capable of absorbing water, must be responsible for much of total water supply.Measurements of VA mycorrhizal infection in field-grown trees indicated, for part of the season, higher per cent infection in trees grown under irrigated grass than under herbicide management. It is suggested that this, which is associated with raised leaf phosphorus levels, may be due at least partly to higher numbers of lateral roots, the root type which becomes infected. The growth and functioning of the root system under field conditions depend upon the production and integration of a range of root types.  相似文献   
68.
斑叶竹节秋海棠微繁殖的研究   总被引:1,自引:0,他引:1  
  相似文献   
69.
Summary Three levels of water stress were induced on pole-size ponderosa pine (Pinus ponderosa) to determine the influence of plant moisture stress on oviposition, survival, and growth of two species of pine sawfly (Neodiprion fulviceps and N. autumnalis). It was found that water stress affected oviposition and subsequent egg survival but not larval development or survival. Stress had a negative effect on early season oviposition (N. fulviceps) and a positive effect on late season oviposition (N. autumnalis). Egg hatch was different between species and years and among treatment levels. Larval development, feeding, and survival were not affected by water stress. Overall, the effect of stress was not sufficient to explain population outbreaks of sawflies. Several hypotheses are presented as possible explanations for the observed experimental results.  相似文献   
70.
Summary Root distribution and growth measured in the field were incorporated into a water uptake model for the CAM succulent Agave deserti and its nurse plant Hilaria rigida, a common desert bunchgrass. Agave deserti responds to the infrequent rainfalls of the Sonoran Desert by extending its existing established roots and by producing new roots. Most of such root growth was completed within one month after soil rewetting, total root length of A. deserti increasing by 84% for a seedling and by 58% for a mediumsized plant in the summer. Root growth in the winter with its lower soil temperatures was approximately half as much as in the summer. For a 15-year period, predicted annual root growth of A. deserti varied more than 18-fold because of annual variations in rainfall amount and pattern as well as seasonal variation in soil temperature. Predicted annual water uptake varied 47-fold over the same period. The nurse plant, which is crucial for establishment of A. deserti seedlings, reduced seedling water uptake by 38% during an average rainfall year. Lowering the location of the root system of a medium-sized A. deserti by 0.24 m reduced its simulated annual water uptake by about 25%, reflecting the importance of shallow roots for this desert succulent. Lowering the root system of a medium-sized H. rigida by 0.28 m increased the simulated annual water uptake of an associated A. deserti seedling by 17%, further indicating the influence of root overlap on competition for water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号