首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4937篇
  免费   134篇
  国内免费   198篇
  2024年   4篇
  2023年   74篇
  2022年   75篇
  2021年   102篇
  2020年   109篇
  2019年   163篇
  2018年   95篇
  2017年   72篇
  2016年   82篇
  2015年   108篇
  2014年   318篇
  2013年   355篇
  2012年   263篇
  2011年   266篇
  2010年   177篇
  2009年   210篇
  2008年   240篇
  2007年   201篇
  2006年   217篇
  2005年   195篇
  2004年   181篇
  2003年   166篇
  2002年   159篇
  2001年   100篇
  2000年   88篇
  1999年   76篇
  1998年   104篇
  1997年   81篇
  1996年   89篇
  1995年   99篇
  1994年   98篇
  1993年   79篇
  1992年   59篇
  1991年   71篇
  1990年   72篇
  1989年   43篇
  1988年   44篇
  1987年   43篇
  1986年   23篇
  1985年   51篇
  1984年   46篇
  1983年   29篇
  1982年   45篇
  1981年   23篇
  1980年   21篇
  1979年   14篇
  1978年   9篇
  1977年   11篇
  1976年   6篇
  1975年   5篇
排序方式: 共有5269条查询结果,搜索用时 265 毫秒
101.
Abstract: The type 1 angiotensin II (All) receptor (AT1-R) has been implicated in the physiological actions mediated by All in the brain. In view of the reported hyperactivity of the brain All system in the spontaneously hypertensive rat (SHR), we compared the expression of AT,-R mRNAs in the brains of normotensive [Wistar Kyoto (WKY)] and SHR animals. Northern blot analysis showed about three- and ∼20-fold increases in the levels of AT1-R mRNAs from the hypothalamus and brainstem areas, respectively, of the SHR compared with the WKY rat brain. This was attributable to greater levels of both AT,1A- and AT,1B-R mRNA subtypes in these areas from the SHR. These observations suggest that increased All receptor levels in SHR brain may, in part, be a result of increased expression of the AT1-R gene.  相似文献   
102.
Cocaine is an inhibitor of dopamine and serotonin reuptake by synaptic terminals and has potent reinforcing effects that lead to its abuse. Tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) catalyze the rate-limiting steps in dopamine and serotonin biosynthesis, respectively, and are the subject of dynamic regulatory mechanisms that could be sensitive to the actions of cocaine. This study assessed the effects of chronic cocaine on brain TH and TPH activities. Cocaine was administered (0.33 mg/infusion, i.v.) to rats for 7 days every 8 min for 6 h per day. This administration schedule is similar to patterns of self-administration by rats when given ad libitum access to this dose. This chronic, response-independent administration increased TH enzyme activity in the substantia nigra (30%) and ventral tegmental area (43%). Moreover, TH mRNA levels were also increased (45 and 50%, respectively). In contrast to the enzymatic and molecular biological changes in the cell bodies, TH activity was unchanged in the terminal fields (corpus striaturn and nucleus accumbens). Similarly, TPH activity was increased by 50% in the raphe nucleus (serotonergic cell bodies). In summary, the chronic response-independent administration of cocaine produces increases in the expression of TH mRNA and activity in both the cell bodies of motor (nigrostriatal) and reinforcement (mesolimbic) dopamine pathways. These increases are not manifested in the terminal fields of these pathways.  相似文献   
103.
Abstract: Gliosis is commonly observed in the CNS following tissue damage, and it also occurs in aging and in many neurodegen-erative diseases. Glial fibrillary acidic protein (GFAP) accumulation is a prominent feature of astrocytic gliosis. An inhibition or delay in GFAP synthesis could mitigate scar formation and thus reduce the formation of a physical barrier. The consequence of this would be to allow neurons and oligodendrocytes to reestablish a functional environment. (—)-Deprenyl, a specific monoamine oxidase (MAO) B inhibitor, has been used as an effective antipar-kinsonian drug, and it has been reported to possess neuroprotective and neurorescue properties. Using northern and slot blots to detect GFAP mRNA in C6 glioma cells, we have demonstrated that (—)-deprenyl decreases the abundance of GFAP mRNA in a time- and dose-dependent manner. The effect seems to be specific to MA0 B inhibitors because (+)-deprenyl and clorgyline exhibit no effect. This study indicates therefore that (-)-deprenyl may be useful for regulating astrogliosis following CNS injury as well as in some neurodegenerative diseases.  相似文献   
104.
Abstract: There appear to be two anatomically distinct β-endorphin (βE) pathways in the brain, the major one originating in the arcuate nucleus of the hypothalamus and a smaller one in the area of the nucleus tractus solitarius (NTS) of the caudal medulla. Previous studies have shown that these two proopiomelanocortin (POMC) systems may be differentially regulated by chronic morphine treatment, with arcuate cells down-regulated and NTS cells unaffected. In the present experiments, we examined the effects of chronic opiate antagonist treatment on βE biosynthesis across different CNS regions to assess whether the arcuate POMC system would be regulated in the opposite direction to that seen after opiate agonist treatment and to determine whether different βE-containing areas might be differentially regulated. Male adult rats were administered naltrexone (NTX) by various routes for 8 days (subcutaneous pellets, osmotic minipumps, or repeated intraperitoneal injections). Brain and spinal cord regions were assayed for total βE-ir, different molecular weight immunoreactive β-endorphin (βE-ir) peptides, and POMC mRNA. Chronic NTX treatment, regardless of the route of administration, reduced total βE-ir concentrations by 30–40% in diencephalic areas (the arcuate nucleus, the remaining hypothalamus, and the thalamus) and the midbrain, but had no effect on βE-ir in the NTS or any region of the spinal cord. At the same time, NTX pelleting increased POMC mRNA levels in the arcuate to ~ 140% of control values. These data suggest that arcuate POMC neurons are up-regulated after chronic NTX treatment (whereas NTS and spinal cord systems remain unaffected) and that they appear to be under tonic inhibition by endogenous opioids. Chromatographic analyses demonstrated that, after chronic NTX pelleting, the ratio of full length βE1–31 to more processed βE-ir peptides (i.e., βE1–27 and βE1–26) tended to increase in a dose-dependent manner in diencephalic areas. Because βE1–31 is the only POMC product that possesses opioid agonist properties, and βE1–27 has been posited to function as an endogenous anatgonist of βE1–31, the NTX-induced changes in the relative concentrations of βE1–31 and βE1–27/βE1–26 may represent a novel regulatory mechanism of POMC cells to alter the opioid signal in the synapse.  相似文献   
105.
106.
We have used a cell-free polysome-based in-vitro mRNA-degradation system to investigate the halflives of plant cell mRNAs. In order to establish the fidelity of the in-vitro system, we used cordycepin to determine the in-vivo half-lives of -tubulin and actin mRNAs in the primary leaves of 4-d-old etiolated oat (Avena sativa L.) seedlings. The in-vitro rank order of half-lives for phytochrome A (45 min), -tubulin (105 min), and actin (220 min) mRNAs mimicked the in-vivo rank order. A pulse of red light given to excised etiolated primary leaves caused an in-vivo reduction in the half-life of -tubulin mRNA. The selectivity of the polysome-based system was further demonstrated by the decrease in the half-life of -tubulin mRNA (from 105 min to 60 min) induced by a pulse of red light given to the etiolated oat seedlings prior to isolation of polysomes. Red light did not affect the apparent half-lives of phytochrome A or actin mRNAs.Abbreviations cab gene for chlorophyll-a/b-binding protein - kb(p) kilobase (pair) - phyA gene for type-I phytochrome protein - rbcS gene for ribulose-1,5-bisphosphate-carboxylase small-subunit We thank Dr. Richard B. Meagher for the pSAc3 actin clone. We thank Dr. Cecil Stewart for the use of his density-gradient fractionator, and Dr. Virginia Crane for instruction in using the fractionator. We also appreciate the helpful comments provided by the other members of the laboratory during the course of this research: Dr. Isaac John, Dr. Iffat Rahim, Linda Barnes, Bruce Held, David Higgs, and Theresa Tirimanne. This work was supported by USDA grants CRGO 88-37261-4196 and 91-37304-6397, and the Iowa State University Biotechnology Program.  相似文献   
107.
Using pulses of nitrate, instead of the permanent presence of external nitrate, to induce the nitrate-assimilating system in Hordeum vulgare L., we demonstrated that nitrate can be considered as a trigger or signal for the induction of nitrate uptake, the appearance of nitratereductase activity and the synthesis of mRNA coding for nitrate reductase. Nitrate pulses stimulated the initial rate of nitrate uptake, even after subsequent cultivation in N-free medium, and resulted in a higher acceleration of the uptake rate in the presence of nitrate than in its absence.Abbreviations NR nitrate reductase  相似文献   
108.
109.
Wataru Nishida  Yutaka Kitami  Kunio Hiwada   《Gene》1993,130(2):297-302
We cloned and sequenced cDNAs encoding calponin (Calp) and SM22 (smooth muscle-specific 22-kDa protein) from rat aorta (RaA) smooth muscle (Smu) cells. The 1504-bp calp cDNA contains a single open reading frame (ORF) which encodes 297 amino acids (aa) (Mr 33 342). The 1186-bp SM22 cDNA contains a single ORF which encodes 201 aa (Mr 22 601). There were 43% identical aa in a 181-aa overlap between RaA Calp and SM22. Especially for the C-terminal region of SM22 and for the first repeat motif of Calp, 70% identity was observed. Northern blot analysis revealed that the calp and SM22 mRNAs were expressed in RaA Smu, but not in rat cardiac and skeletal muscles. SM22 mRNA was much more abundant than calp mRNA in RaA (3- to 4-fold). The expression levels of the calp and SM22 mRNAs in RaA showed a significant increase for 5 to 15 week old rats (1.5- to 3-fold) with vascular development and blood pressure elevation. No significant differences were observed in the expression of the RaA calp and SM22 mRNAs between normotensive (Wistar Kyoto) and spontaneously hypertensive rats (SHR).  相似文献   
110.
The cytoskeleton of most cells is complex and spatially diverse. The mRNAs for some cytoskeletal proteins are localized, suggesting that synthesis of these proteins may occur at sites appropriate for function or assembly. mRNA concentrations were first observed for several oocyte and embryonic mRNAs. Some insight has been gained into the mechanisms that help to position these mRNAs. More surprising to some, many cytoskeletal mRNAs are also localized. Among them are mRNAs for actin, tubulin, intermediate filaments, and a variety of associated proteins. Different mRNAs in the same cell can be located in different places; the same mRNA can be located in different places; the same mRNA can be located differently at different times of development. For example, we observed vimentin mRNA in developing chicken muscle cultures by fluorescent in situ hybridization. We found that vimentin mRNA takes on a variety of positions during myogenesis, ending up located with its cognate protein at costameres. This last pattern is significant because it is too finely structured to have a function in the soluble phase and probably reflects contranslational assembly of this particular protein. Analogies can be made between oocyte or embryonic positions (animal/vegetal poles, oocyte cortex, and interior) and somatic cell positions (anterior/posterior and cell cortex/cell center). These analogies may point to conserved mechanisms for moving and retaining mRNA. Localization of cytoskeletal synthesis, through the mRNA or by other means, may prove as important for assembling and maintaining differentiated cytoskeletal structures and somatic cells as mRNA location is for organizing the embryo. Mechanisms that permit mRNA localization are likely to be conserved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号