首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4956篇
  免费   146篇
  国内免费   200篇
  2024年   6篇
  2023年   31篇
  2022年   26篇
  2021年   51篇
  2020年   61篇
  2019年   66篇
  2018年   80篇
  2017年   62篇
  2016年   69篇
  2015年   71篇
  2014年   106篇
  2013年   172篇
  2012年   79篇
  2011年   129篇
  2010年   83篇
  2009年   155篇
  2008年   160篇
  2007年   194篇
  2006年   165篇
  2005年   180篇
  2004年   154篇
  2003年   165篇
  2002年   175篇
  2001年   126篇
  2000年   120篇
  1999年   132篇
  1998年   134篇
  1997年   136篇
  1996年   141篇
  1995年   133篇
  1994年   117篇
  1993年   162篇
  1992年   136篇
  1991年   151篇
  1990年   132篇
  1989年   134篇
  1988年   121篇
  1987年   111篇
  1986年   120篇
  1985年   119篇
  1984年   124篇
  1983年   75篇
  1982年   115篇
  1981年   98篇
  1980年   73篇
  1979年   50篇
  1978年   26篇
  1977年   29篇
  1976年   27篇
  1975年   9篇
排序方式: 共有5302条查询结果,搜索用时 265 毫秒
101.
Summary Quantitative relationships for key processes influencing N response were derived from measurements of inorganic N in soil, the weights and N contents of foliage and tubers made at intervals during growth of maincrop potatoes in 11 N fertilizer experiments.Apparent mineralization rates (calculated from measurements of N uptake and inorganic N in the top metre and averaged over the growth period) were remarkably similar from site to site despite wide differences in the textures, water contents and organic matter contents of the soils. They were mostly about 0.78 kg N ha–1 m–1 d–1.Inorganic N in the top 50 cm of soil was rapidly removed by the crop until it fell on all sites to a low value (about 4 g N cm–3) which was maintained for the remainder of the growth period. When N fertilizer was applied, growth rate until at least the end of July was always well defined by a single coefficient in a previously derived equation. Average values of this coefficient for each of the soil types and for each of the years in which the experiments were carried out were within 20% of each other.The minimum %N in the dry matter needed to permit maximum growth rate declined with increase in plant weight in a similar manner to that previously found for other crops.Equations were found for the partition of assimilate and of nitrogen between the foliage and tubers. The coefficients in them were little affected by whether or not N fertilizer was applied.According to these relationships the maximum potential dry weight yield of tubers is 20 t ha–1 and requires the crop to contain at least 290 kg N ha–1.  相似文献   
102.
Features of Crassulacean acid metabolism (CAM) were studied in a variety of different succulents in response to climatic conditions between March 1977 and October 1983 in the southern Namib desert (Richtersveld). A screening in 1977 and 1978 revealed that nearly all investigated succulents performed a CAM, but overnight accumulation of malate declined gradually with decreasing soil water potential, tissue osmotic potential, and leaf water content. This was further substantiated by an extended period of insufficient rainfall in 1979 and 1980 which damaged the evergreen CAM succulents between 80 and 100%. In most of the species still living, neither CO2-gas exchange nor diurnal acid fluctuation, indicative of CAM, could be detected unless an abundant rainfall restored both CAM features. Plants persisted in a stage of latent life.Water supply is one necessary prerequisite for CAM in the Richtersveld. But even well-watered plants with CAM were sensitive to short-term water stress caused by high water-vapour partialpressure deficit (VPD) in the night, which reduced or prevented CO2 uptake and resulted in a linear relation between overnight accumulated malate and VPD. The results do not support the opinion that, for the Namib succulents, CAM is an adaptive mechanism to water stress since long-term and short-term water stress stopped nocturnal malate synthesis, but instead lead to the conclusion that nocuturnal CO2 fixation is only performed when the water status of the plant can be improved simultaneously.Abbreviations CAM Crassulacean acid metabolism - VPD water vapour pressure deficit Dedicated to Professor H. Ziegler on the occasion of his 60th birthday  相似文献   
103.
M. C. Astle  P. H. Rubery 《Planta》1985,166(2):252-258
The effects of methyl jasmonate and jasmonic acid on uptake of abscisic acid (ABA) by suspension-cultured runner-bean cells and subapical runner-bean root segments have been investigated. Increasing concentrations of methyl jasmonate inhibit ABA uptake by the cultured cells with a K i of 22±3 M. This is not due to cytoplasmic acidification or to effects on metabolism of ABA, and is not additive with inhibition of radioactive ABA uptake by nonradioactive ABA. Uptake of indol-3-yl acetic acid (IAA) is unaffected by methyl jasmonate. The maximum effect of nonradioactive ABA in inhibiting uptake of radioactive ABA, previously shown to reflect saturation of an ABA carrier, is generally greater than the effect of maximally inhibitory concentrations of methyl jasmonate. Similar results were obtained with root segments, but longer incubation times were necessary to observe inhibitory effects of methyl jasmonate. Demethylation of methyl jasmonate to jasmonic acid does not appear to be required since similar concentrations of jasmonic acid had no observable direct effect on ABA uptake other than that attributable to cytoplasmic acidification. Histidine reagents, a proton ionophore and acidic external pH all affect in parallel the inhibition by methyl jasmonate and nonradioactive ABA of uptake of radioactive ABA by the cultured cells. There is no effect of ABA or nonradioactive methyl jasmonate on uptake of radioactive methyl jasmonate by the cultured cells. It is proposed that methyl jasmonate interacts with the ABA carrier. Various models for this interaction are discussed.Abbreviations ABA abscisic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - IAA indol-3-yl acetic acid  相似文献   
104.
We examined the effects of treatments affecting norepinephrine release on the number of norepinephrine reuptake recognition sites as reflected by desipramine binding. To do this, we used manipulations having similar presynaptic but contrasting postsynaptic effects. Presynaptic inhibition by 6-hydroxydopamine lesion or by clonidine, and postsynaptic receptor stimulation by isoproterenol, reduced desipramine binding. Presynaptic stimulation by d-amphetamine and postsynaptic receptor blockade by prazosin increased desipramine binding. Similar effects and binding properties were seen in cerebral cortex, heart, and soleus muscle. After unilateral noradrenergic lesions, reduction in desipramine binding correlated with reduction in norepinephrine uptake. These results show that norepinephrine reuptake appears to be regulated by transmitter release regardless of effects on postsynaptic transmission, and that this regulation is analogous in the central and sympathetic nervous systems.  相似文献   
105.
Tricyclic antidepressants and nontricyclic serotonin (5-hydroxytryptamine) uptake blockers monophasically inhibit [3H]imipramine binding in human platelets. Similarly, serotonin and tryptamine inhibit the binding of [3H]imipramine in the low micromolar range and with a pseudo-Hill coefficient near unity. Dissociation of the [3H]imipramine receptor complex in the presence of uptake inhibitors follows first-order kinetics with a half-life of approximately 60 min. Although serotonin and tryptamine do not decrease [3H]imipramine binding when added under equilibrium conditions, simultaneous addition of serotonin or tryptamine with serotonin uptake inhibitors decreases the rate of ligand-receptor dissociation in a concentration-dependent manner. These data suggest a common site of action for serotonin, which is the substrate of the transporter system, and of tryptamine, its nonhydroxylated analog. This hypothesis is supported by the identification of a high-affinity (Km = 0.55 microM), saturable, and temperature-dependent uptake of [3H]tryptamine in human platelets. Uptake of [3H]tryptamine was inhibited potently by imipramine and nontricyclic serotonin uptake inhibitors with a potency similar to that observed for [3H]serotonin uptake. These data support the hypothesis that in platelets, [3H]imipramine, tricyclic, and nontricyclic serotonin uptake inhibitors bind to a common recognition site that is associated with the serotonin transporter but that differs from the substrate recognition site of the carrier through which serotonin and tryptamine exert a heterotropic allosteric modulation on [3H]imipramine binding.  相似文献   
106.
Solubilization of an Adenosine Uptake Site in Brain   总被引:1,自引:1,他引:0  
Procedures are described for the solubilization of adenosine uptake sites in guinea pig and rat brain tissue. Using [3H]nitrobenzylthioinosine [( 3H]NBI) the solubilized site is characterized both kinetically and pharmacologically. The binding is dependent on protein concentration and is saturable, reversible, specific, and high affinity in nature. The KD and Bmax of guinea pig extracts are 0.13 +/- 0.02 nM and 133 +/- 18 fmol/mg protein, respectively, with linear Scatchard plots obtained routinely. Similar kinetic parameters are observed in rat brain. Adenosine uptake inhibitors are the most potent inhibitors of [3H]NBI binding with the following order of potency, dilazep greater than hexobendine greater than dipyridamole. Adenosine receptor ligands are much less potent inhibitors of binding, and caffeine is without effect. The solubilized adenosine uptake site is, therefore, shown to have virtually identical properties to the native membrane site. The binding of the adenosine A1 receptor agonist [3H]cyclohexyladenosine [( 3H]CHA) to the solubilized brain extract was also studied and compared with that of [3H]NBI. In contrast to the [3H]NBI binding site [3H]CHA binds to two apparent populations of adenosine receptor, a high-affinity site with a KD of 0.32 +/- 0.06 nM and a Bmax of 105 +/- 30 fmol/mg protein and a lower-affinity site with a KD of 5.50 +/- 0.52 nM and Bmax of 300 +/- 55 fmol/mg protein. The pharmacology of the [3H]CHA binding site is consistent with that of the adenosine receptor and quite distinct from that of the uptake [( 3H]NBI binding) site. Therefore, we show that the adenosine uptake site can be solubilized and that it retains both its binding and pharmacologic properties in the solubilized state.  相似文献   
107.
Preincubation of rat brain synaptosomes with xanthine and xanthine oxidase (X/XO) in Ca2+-free Krebs buffer resulted in a 27% inhibition of synaptosomal gamma-aminobutyric acid (GABA) uptake. Addition of 1.5 mM CaCl2 increased the inhibition with X/XO to 46%, and inhibition was essentially complete when the calcium ionophore A23187 also was included. In other studies, preincubation of purified rat brain mitochondria with the combination of X/XO and 4 microM CaCl2 produced a significant (38%) decrease in state 3 respiration with glutamate/malate as substrate that was not seen with either X/XO or Ca2+ alone. Similar results were obtained using cultured mouse spinal cord neurons in which incubation with X/XO/ADP/FeCl2 and A23187 produced membrane damage as assessed by a 32% reduction of neuronal Na+, K+-ATPase activity. Neither X/XO/ADP/FeCl2 nor A23187 alone caused detectable inhibition. These results demonstrate the synergistic damaging effect of free radicals and Ca2+ on membrane function. In addition, they suggest that free radical-induced peroxidation of membrane lipid, occurring focally during complete or nearly complete ischemia in vivo, could result in intense cellular perturbation when coupled with increased intracellular Ca2+.  相似文献   
108.
Investigations of the uptake of ammonium (NH 4 + ) by Rhodopseudomonas capsulata B100 supported the presence of an NH 4 + transport system. Experimentally NH 4 + was determined by electrode or indophenol assay and saturation kinetics were observed with two apparent K m's of 1.7 M and 11.1 M (pH 6.8, 30°) and a V max at saturation of 50–60 nmol/min·mg protein. The optimum pH and temperature were 7.0 and 33° C, respectively. The Q10 quotient was calculated to be 1.9 at 100 M NH 4 + , indicating enzymatic involvement. In contrast to the wild type, B100, excretion of NH 4 + , not uptake, was observed in a glutamine auxotroph, R. capsulata G29, which is derepressed for nitrogenase and lacks glutamine synthetase activity. G29R1, a revertant of G29, also took up NH 4 + at the same rate as wild type and had fully restored glutamine synthetase activity. Partially restored derivatives, G29R5 and G29R6, grew more slowly than wild type on NH 4 + as the nitrogen source, remained derepressed for nitrogenase in the presence of NH 4 + , and displayed rates of NH 4 + uptake in proportion to their glutamine synthetase activity. Ammonium uptake and glutamine synthetase activity were also restored in R. capsulata G29 exconjugants which had received the plasmid pPS25, containing the R. capsulata glutamine synthetase structural gene. These data suggest that NH 4 + transport is tightly coupled to assimilation.Abbreviations used CHES cyclohexylaminoethanesulfonic acid - GS glutamine synthetase - SDS sodium dodecylsulfate  相似文献   
109.
CO2 uptake and transport in leaf mesophyll cells   总被引:4,自引:3,他引:1  
Abstract The acquisition of inorganic carbon for photosynthetic assimilation by leaf mesophyll cells and chloroplasts is discussed with particular reference to membrane permeation of CO2 and HCO?3. Experimental evidence indicates that at the apoplast pH normally experienced by leaf mesophyll cells (pH 6–7) CO2 is the principal species of inorganic carbon taken up. Uptake of HCO?3 may also occur under certain circumstances (i.e. pH 8.5), but its contribution to the net flux of inorganic carbon is small and HCO?3 uptake does not function as a CO2-concentrating mechanism. Similarly, CO2 rather than HCO?3 appears to be the species of inorganic carbon which permeates the chloroplast envelope. In contrast to many C3 aquatic plants and C4 plants, C3 terrestrial plants lack specialized mechanisms for the acquisition and transport of inorganic carbon from the intercellular environment to the site of photosynthetic carboxylation, but rely upon the diffusive uptake of CO2.  相似文献   
110.
Abstract Growth-chamber cultivated Raphanus plants accumulate nitrate during their vegetative growth. After 25 days of growth at a constant supply to the roots of 1 mol m?3 (NO?3) in a balanced nutrient solution, the oldest leaves (eight-leaf stage) accumulated 2.5% NO?3-nitrogen (NO3-N) in their lamina, and almost 5% NO3-N in their petioles on a dry weight basis. This is equivalent to approximately 190 and 400 mol?3 m?3 concentration of NO?3 in the lamina and the petiole, respectively, as calculated on a total tissue water content basis. Measurements were made of root NO?3 uptake, NO?3 fluxes in the xylem, nitrate uptake by the mesophyll cells, and nitrate reduction as measured by an in vivo test. NO?3 uptake by roots and mesophyll cells was greater in the light than in the dark. The NO?3 concentration in the xylem fluid was constant with leaf age, but showed a distinct daily variation as a result of the independent fluxes of root uptake, transpiration and mesophyll uptake. NO?3 was reduced in the leaf at a higher rate in the light than in the dark. The reduction was inhibited at the high concentrations calculated to exist in the mesophyll vacuoles, but reduction continued at a low rate, even when there was no supply from the incubation medium. Sixty-four per cent of the NO?3 influx was turned into organic nitrogen, with the remaining NO?3 accumulating in both the light and the dark.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号