首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
  2019年   2篇
  2017年   3篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2001年   1篇
  2000年   1篇
排序方式: 共有31条查询结果,搜索用时 78 毫秒
11.
12.
Nutrient sulfate is essential for numerous physiological functions in mammalian growth and development. Accordingly, disruptions to any of the molecular processes that maintain the required biological ratio of sulfonated and unconjugated substrates are likely to have detrimental consequences for mammalian physiology. Molecular processes of sulfate biology can be broadly grouped into four categories: firstly, intracellular sulfate levels are maintained by intermediary metabolism and sulfate transporters that mediate the transfer of sulfate across the plasma membrane; secondly, sulfate is converted to 3′-phosphoadenosine 5′-phosphosulfate (PAPS), which is the universal sulfonate donor for all sulfonation reactions; thirdly, sulfotransferases mediate the intracellular sulfonation of endogenous and exogenous substrates; fourthly, sulfate is removed from substrates via sulfatases. From the literature, we curated 91 human genes that encode all known sulfate transporters, enzymes in pathways of sulfate generation, PAPS synthetases and transporters, sulfotransferases and sulfatases, with a focus on genes that are linked to human and animal pathophysiology. The predominant clinical features linked to these genes include neurological dysfunction, skeletal dysplasias, reduced fecundity and reproduction, and cardiovascular pathologies. Collectively, this review provides reference information for genetic investigations of perturbed mammalian sulfate biology.  相似文献   
13.
Estrogens display intriguing tissue selective action that is of great biomedical importance in the development of optimal therapeutics for the prevention and treatment of breast cancer. There are also strong evidences to show that both endogenous and exogenous estrogens are involved in the pathogenesis of breast cancer. Tamoxifen has been the only drug of choice for more than 30 years to treat patients with estrogen related (ER) positive breast tumors. There is a need therefore, for identifying newer, potential and novel candidates for breast cancer. Keeping this in view, the present review focuses on selective estrogen receptor modulators and estrogen antagonists such as sulfatase and aromatase inhibitors involved in breast cancer therapy. A succinct and critical overview of the structure of estrogen receptors, their signaling and involvement in breast carcinogenesis are herein described.  相似文献   
14.
Heparan sulfate endosulfatases Sulf1 and Sulf2 hydrolyze 6-O-sulfate in heparan sulfate, thereby regulating cellular signaling. Previous studies have revealed that Sulfs act predominantly on UA2S-GlcNS6S disaccharides and weakly on UA-GlcNS6S disaccharides. However, the specificity of Sulfs and their role in sulfation patterning of heparan sulfate in vivo remained unknown. Here, we performed disaccharide analysis of heparan sulfate in Sulf1 and Sulf2 knock-out mice. Significant increases in ΔUA2S-GlcNS6S were observed in the brain, small intestine, lung, spleen, testis, and skeletal muscle of adult Sulf1(-/-) mice and in the brain, liver, kidney, spleen, and testis of adult Sulf2(-/-) mice. In addition, increases in ΔUA-GlcNS6S were seen in the Sulf1(-/-) lung and small intestine. In contrast, the disaccharide compositions of chondroitin sulfate were not primarily altered, indicating specificity of Sulfs for heparan sulfate. For Sulf1, but not for Sulf2, mRNA expression levels in eight organs of wild-type mice were highly correlated with increases in ΔUA2S-GlcNS6S in the corresponding organs of knock-out mice. Moreover, overall changes in heparan sulfate compositions were greater in Sulf1(-/-) mice than in Sulf2(-/-) mice despite lower levels of Sulf1 mRNA expression, suggesting predominant roles of Sulf1 in heparan sulfate desulfation and distinct regulation of Sulf activities in vivo. Sulf1 and Sulf2 mRNAs were differentially expressed in restricted types of cells in organs, and consequently, the sulfation patterns of heparan sulfate were locally and distinctly altered in Sulf1 and Sulf2 knock-out mice. These findings indicate that Sulf1 and Sulf2 differentially contribute to the generation of organ-specific sulfation patterns of heparan sulfate.  相似文献   
15.
Heparan sulfate proteoglycans regulate various physiological and developmental processes through interactions with a number of protein ligands. Heparan sulfate (HS)-ligand binding depends on the amount and patterns of sulfate groups on HS, which are controlled by various HS sulfotransferases in the Golgi apparatus as well as extracellular 6-O-endosulfatases called “Sulfs.” Sulfs are a family of secreted molecules that specifically remove 6-O-sulfate groups within the highly sulfated regions on HS. Vertebrate Sulfs promote Wnt signaling, whereas the only Drosophila homologue of Sulfs, Sulf1, negatively regulates Wingless (Wg) signaling. To understand the molecular mechanism for the negative regulation of Wg signaling by Sulf1, we studied the effects of Sulf1 on HS-Wg interaction and Wg stability. Sulf1 overexpression strongly inhibited the binding of Wg to Dally, a potential target heparan sulfate proteoglycan of Sulf1. This effect of Drosophila Sulf1 on the HS-Wg interaction is similar to that of vertebrate Sulfs. Using in vitro, in vivo, and ex vivo systems, we show that Sulf1 reduces extracellular Wg protein levels, at least partly by facilitating Wg degradation. In addition, expression of human Sulf1 in the Drosophila wing disc lowers the levels of extracellular Wg protein, as observed for Drosophila Sulf1. Our study demonstrates that vertebrate and Drosophila Sulfs have an intrinsically similar activity and that the function of Sulfs in the fate of Wnt/Wg ligands is context-dependent.  相似文献   
16.
Sulfs are secreted sulfatases that catalyse removal of sulfate from Heparan Sulfate Proteoglycans (HSPGs) in the extracellular space. These enzymes are well known to regulate a number of crucial signalling pathways during development. In this study, we report that DSulfatase-1 (DSulf1), the unique Drosophila Sulf protein, is a regulator of Hedgehog (Hh) signalling during wing development. DSulf1 activity is required in both Hh source and Hh receiving cells for proper positioning of Hh target gene expression boundaries. As assessed by loss- and gain-of-function experiments in specific compartments, DSulf1 displays dual functions with respect to Hh signalling, acting as a positive regulator in Hh producing cells and a negative regulator in Hh receiving cells. In either domain, DSulf1 modulates Hh distribution by locally lowering the concentration of the morphogen at the apical pole of wing disc cells. Thus, we propose that DSulf1, by its desulfation catalytic activity, lowers Hh/HSPG interaction in both Hh source and target fields, thereby enhancing Hh release from its source of production and reducing Hh signalling activity in responding cells. Finally, we show that Dsulf1 pattern of expression is temporally regulated and depends on EGFR signalling, a Hh-dependent secondary signal in this tissue. Our data reveal a novel Hh regulatory feedback loop, involving DSulf1, which contributes to maintain and stabilise expression domains of Hh target genes during wing disc development.  相似文献   
17.
Benjdia A  Dehò G  Rabot S  Berteau O 《FEBS letters》2007,581(5):1009-1014
To be active all known arylsulfatases undergo a unique post-translational modification leading to the conversion of an active site residue (serine or cysteine) into a C(alpha)-formylglycine. Although deprived of sulfatase activity, Escherichia coli K12 can efficiently mature heterologous Cys-type sulfatases. Three potential enzymes (AslB, YdeM and YidF) belonging to the anaerobic sulfatase maturating enzyme family (an SME) are present in its genome. Here we show that E. coli could mature Cys-type sulfatases only in aerobic conditions and that knocking-out of aslB, ydeM and yidF does not impair Cys-type sulfatase maturation. These findings demonstrate that these putative anSME are not involved in Cys-type sulfatase maturation and strongly support the existence of a second, oxygen-dependent and Cys-type specific sulfatase maturation system among prokaryotes.  相似文献   
18.
Sulfation is important in the metabolism and inactivation of steroidal compounds and hormone replacement therapeutic (HRT) agents in human tissues. Although generally inactive, many steroid sulfates are hydrolyzed to their active forms by sulfatase activity. Therefore, the specific sulfotransferase (SULT) isoforms and the levels of steroid sulfatase (STS) activity in tissues are important in regulating the activity of steroidal and HRT compounds. Tibolone (Tib) is metabolized to three active metabolites and all four compounds are readily sulfated. Tib and the Δ4-isomer are sulfated at the 17β-OH group by SULT2A1 and the 17-sulfates are resistant to hydrolysis by human placental STS. 3-OH and 3β-OH Tib can form both 3- and 17-monosulfates as well as disulfates. Only the 3β-sulfates are susceptible to STS hydrolysis. Raloxifene monosulfation was catalyzed by at least seven SULT isoforms and SULT1E1 also synthesizes raloxifene disulfate. SULT1E1 forms both monosulfates in a ratio of approximately 8:1 with the more abundant monosulfate migrating on HPLC identical to the SULT2A1 synthesized monosulfate. The raloxifene monosulfate formed by both SULT isoforms is sensitive to STS hydrolysis whereas the low abundance monosulfate formed by SULT1E1 is resistant. The benzothiophene sulfates of raloxifene and arzoxifene were hydrolyzed by STS whereas the raloxifene 4′-phenolic sulfate was resistant. These results indicate that tissue specific expression of SULT isoforms and STS could be important in the inactivation and regeneration of the active forms of HRT agents.  相似文献   
19.
A series of C19 and C21 steroids bearing one or two inhibiting groups (3 β -sulfamate and 17 α - or 20(S)- t -butylbenzyl or benzyl) were synthesized and tested for inhibition of steroid sulfatase activity. When only a sulfamate group was added to dehydroepiandrosterone, androst-5-ene-3 β,17 β -diol, pregnenolone and 20-hydroxy-pregnenolone, no significant inhibition of steroid sulfatase occurred at concentrations of 0.3 and 3 μM. With only a t -butylbenzyl or a benzyl group, a stronger steroid sulfatase inhibition was obtained in the androst-5-ene than in the pregn-5-ene series. Comparative results from the screening tests and the IC 50 values have shown that the effect of a sulfamate moiety as a second inhibiting group can be combined to the t -butylbenzyl or benzyl effect in the C19 and C21 steroid series. The 3 β -sulfamoyloxy-17 α - t -butylbenzyl-5-androsten-17 β -ol (10) was thus found to be the most active compound with IC 50 values of 46 ± 8 and 14 ± 1 nM, respectively for the transformations of E 1 S to E 1 and DHEAS to DHEA. The IC 50 values of compound 10 are similar to that of 17 α - t -butylbenzyl-estradiol, which was previously reported by our group as a good steroid sulfatase reversible inhibitor, but remains higher than that of the potent inactivators estrone-3- O -sulfamate (EMATE) and 17 α - t -butylbenzyl-EMATE. However, contrary to these two latter inhibitors, compound 10 did not induce any proliferative effect on estrogen-sensitive ZR-75-1 cells nor on androgen-sensitive Shionogi cells at concentrations tested, suggesting that this steroid sulfatase inhibitor is non estrogenic and non androgenic.  相似文献   
20.
The observation that one enzyme can accelerate several chemically distinct reactions was at one time surprising because the enormous efficiency of catalysis was often seen as inextricably linked to specialization for one reaction. Originally underreported, and considered a quirk rather than a fundamental property, enzyme promiscuity is now understood to be important as a springboard for adaptive evolution. Owing to the large number of promiscuous enzymes that have been identified over the last decade, and the increased appreciation for promiscuity's evolutionary importance, the focus of research has shifted to developing a better understanding of the mechanistic basis for promiscuity and the origins of tolerant or restrictive specificity. We review the evidence for widespread crosswise promiscuity amongst enzymes that catalyze phosphoryl transfer, including several members of the alkaline phosphatase superfamily, where large rate accelerations between 106 and 1017 are observed for both native and multiple promiscuous reactions. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号