首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7357篇
  免费   207篇
  国内免费   256篇
  2024年   9篇
  2023年   42篇
  2022年   63篇
  2021年   117篇
  2020年   108篇
  2019年   160篇
  2018年   210篇
  2017年   97篇
  2016年   115篇
  2015年   158篇
  2014年   393篇
  2013年   483篇
  2012年   273篇
  2011年   421篇
  2010年   241篇
  2009年   377篇
  2008年   430篇
  2007年   402篇
  2006年   395篇
  2005年   396篇
  2004年   345篇
  2003年   302篇
  2002年   256篇
  2001年   164篇
  2000年   175篇
  1999年   183篇
  1998年   167篇
  1997年   156篇
  1996年   137篇
  1995年   142篇
  1994年   113篇
  1993年   83篇
  1992年   87篇
  1991年   74篇
  1990年   64篇
  1989年   57篇
  1988年   65篇
  1987年   53篇
  1986年   40篇
  1985年   50篇
  1984年   52篇
  1983年   32篇
  1982年   22篇
  1981年   23篇
  1980年   27篇
  1979年   19篇
  1978年   9篇
  1977年   13篇
  1976年   11篇
  1973年   3篇
排序方式: 共有7820条查询结果,搜索用时 15 毫秒
121.
122.
123.
Abstract: In a previous study, protein kinase FA/glycogen synthase kinase-3 ( FA/GSK-3 ) was identified as a myelin basic protein (MBP) kinase associated with intact brain myelin. In this report, the phosphorylation sites of MBP by kinase FA/GSk-3 were further determined by two-dimensional electrophoresis/TLC, phosphoamino acid analysis, tryptic peptide mapping, Edman degradation, and direct sequencing. Kinase FA/GSK-3 phosphorylates MBP on both threonine and serine residues. Three tryptic phosphopeptide peaks were resolved by C18 reverse-phase HPLC. Sequential manual Edman degradation together with direct sequence analysis revealed that T(p)PPPSQGK is the phosphorylation site sequence for the first major phosphopeptide peak. When mapping with the bovine brain MBP sequence, we finally demonstrate Thr97-Pro, one of the in vivo phosphorylation sites in MBP, as the major site phosphorylated by kinase FA/GSK-3, implicating a physiologically relevant role of FA/GSK-3 in the regulation of brain myelin function. By using the same approach, we also identified NIVT94(p)PR as the phosphorylation site sequence in the second major tryptic phosphopeptide derived from [32P]MBP phosphorylated by kinase FA/GSK-3, further indicating that kinase FA/GSK-3 represents a Thr-Pro motif-directed MBP kinase involved in the phosphorylation of brain myelin.  相似文献   
124.
We have isolated the cDNA and corresponding genomic DNA encoding citrate synthase in Neurospora crassa. Analysis of the protein coding region of this gene, named cit-1, indicates that it specifies the mitochondrial form of citrate synthase. The predicted protein has 469 amino acids and a molecular mass of 52002 Da. The gene is interrupted by four introns. Hybridization experiments show that a cit-1 probe binds to two different fragments of genomic DNA, which are located on different chromosomes. Neurospora crassa may have two isoforms of citrate synthase, one in the mitochondria and the other in microbodies.  相似文献   
125.
Cerulenin, an antifungal antibiotic produced by Cephalosporium caerulens, is a potent inhibitor of fatty acid synthase in various organisms, including Saccharomyces cerevisiae. The antibiotic inhibits the enzyme by binding covalently to the active center cysteine of the condensing enzyme domain. We isolated 12 cerulenin-resistant mutants of S. cerevisiae following treatment with ethyl methanesulfonate. The mechanism of cerulenin resistance in one of the mutants, KNCR-1, was studied. Growth of the mutant was over 20 times more resistant to cerulenin than that of the wild-type strain. Tetrad analysis suggested that all mutants mapped at the same locus, FAS2, the gene encoding the subunit of the fatty acid synthase. The isolated fatty acid synthase, purified from the mutant KNCR-1, was highly resistant to cerulenin. The cerulenin concentration causing 50% inhibition (IC50) of the enzyme activity was measured to be 400 M, whereas the IC50 value was 15 M for the enzyme isolated from the wild-type strain, indicating a 30-fold increase in resistance to cerulenin. The FAS2 gene was cloned from the mutant. Sequence replacement experiments suggested that an 0.8 kb EcoRV-HindIII fragment closely correlated with cerulenin resistance. Sequence analysis of this region revealed that the GGT codon encoding Gly-1257 of the FAS2 gene was altered to AGT in the mutant, resulting in the codon for Ser. Furthermore, a recombinant FAS2 gene, in which the 0.8 Kb EcoRV-HindIII fragment of the wild-type FAS2 gene was replaced with the same region from the mutant, when introduced into FAS2-defective S. cerevisiae complemented the FAS2 pheno-type and showed cerulenin resistance. These data indicate that one amino acid substitution (Gly Ser) in the subunit of fatty acid synthase is responsible for the cerulenin resistance of the mutant KNCR-1.  相似文献   
126.
In lyophilized needles of Norway spruce ( Picea abies [L.] Karsten) and starting from bud break, we determined enzyme activities (sucrose phosphate synthase [SPS; EC 2.4,1.14]. sucrose synthase [SS; EC 2.4,1.13]. acid invertase [AI; EC 3.2,1.26]) and intermediates (starch, sucrose, glucose, fructose; fructose 6-phosphate, fructose 2.6-bisphosphate [F26BP]) of carbohydrate metabolism together with needle weight, shoot length, chlorophyll and protein. For up to 110 days after bud break, samples were taken twice a week from about 25-year-old trees under field conditions. At least three periods can be distinguished during needle maturation. During the first period (up to 45 days after bud break) Al showed the highest extractable activity. This coincided with very high levels of F26BP (up to 11 pmol [mg dry weight]−1) and a transient increase of starch in parallel to a decrease of sucrose. The interval between 45 and 70 days after bud break was characterized by high SS activity (ratio of fructose/glucose >1), much decreased levels of F26BP (down to below 1 pmol [mg dry weight]−1), and a pronounced increase in the dry weight/fresh weight ratio. In parallel, starch declined and soluble carbohydrates increased. Finally, needle maturation was characterized by decreasing SS and continuously increasing SPS activities, so that the ratio of SPS/SS increased more than 6-fold. AI. however, did not decline with maturation. Changes in pool sizes of metabolites and enzyme activities (AI. SPS) are consistent with current concepts on sink/source transition. SS is obviously important with regard to the synthesis of structural polysaccharides.  相似文献   
127.
Evolution of HCN from both rice ( Oryza sativa ) and cocklebur ( Xanthium pennsylvanicum ) seeds increased during a pre-germination period and preceded the evolution of (C2H4). These two species were adopted as the representatives of starchy and fatty seeds, respectively. Ethylene promotes seed germination of many species. However, HCN evolution declined abruptly when the radicles emerged and before the peak in C2H4 evolution. More-over, both rice and soybean ( Glycine max ) seeds showed some activity of β-cyanoalanine synthase (CAS, EC 4.4.1.9) even in the unimbibed dry state. The activities of CAS in the lower seed of cocklebur and in soybean seeds increased rapidly after emergence of the radicle. However, the CAS of rice seeds, with high activity in the dry state, exhibited a bimodal change, gradually decreasing until radicle emergence had occurred, but then increaing. It is thus likly that HCN evolution during initial imbibition may be derived from cyanogenic reserves and controlled by both pre-existing and subsequently-developing CAS. The exogenous application of C2H4 stimulated the activities of CAS in both rice and upper cocklebur seeds and reduced their cyanogen contents. Therefore, the decline of HCN evolution after germination seems to be due to the increased activities of CAS by endogenously produced C2H4.  相似文献   
128.
The metabolism of wild-type Arabidopsis thaliana L. and its mutant TC265 were compared in order to reveal the role of the chloroplast glucose transporter. Plants were grown in a 12-h photoperiod. From 20 to 40 days after germination, starch per gram fresh weight of shoot in the mutant was four times that in the wild type. The extent of this difference did not alter during this period. Stereological analysis showed that the chloroplasts in the mutant were larger than those in the wild type; the thylakoids appeared to be distorted by the high starch content. [U-14C]Glucose and [U-14C]glycerol were supplied, separately, to excised leaves in the dark. [U-14C]Glucose was a good precursor of sucrose in the wild type and mutant; [U-14C]glycerol was a poor precursor of sucrose in both. The distribution of 14C in the wild type was used to calculate that the net flux was from hexose monophosphates to triose phosphates, not vice versa. During the first 4 h of the night the sugar content (75% sucrose, 20% glucose) of the leaves of the mutant dropped sharply, and at all times during the night it was less than that of the wild-type leaves. This drop in sugar coincided with a decrease in the rate of respiration. The growth rate of the mutant was less than that of the wild type. Addition of sucrose restored the rate of respiration at night and increased the rate of growth. It is argued that a major function of the glucose transporter in Arabidopsis chloroplasts is export of the products of starch breakdown that are destined for sucrose synthesis at night.We thank Professor C.R. Somerville for his generous gift of seed of the Arabidopsis mutant TC265. We are also grateful to Mr B. Chapman for assistance with the preparation of the sections for electron microscopy. R.N.T. thanks the Science and Engineering Research Council for a studentship.  相似文献   
129.
TransgenicNicotiana tabacum L. Petit Havana SR1 F1-plants expressing tryptophan decarboxylase cDNA (tdc) fromCatharanthus roseus (L.) G. Don under the control of the CaMV 35S promoter and terminator exhibited tryptophan decarboxylase (TDC) enzyme activity and accumulated tryptamine. The plants with the highest TDC activity contained 19 pkat per mg of protein. The influence of transgenic expression oftdc on the activities of anthranilate synthase (AS) and chorismate mutase (CM) were examined in 10 transgenic tobacco plants. The specific activities of these two chorismate-utilizing enzymes were not significantly affected by expression oftdc, despite their important functions as branch point enzymes in the shikimate pathway. The results indicate that the normal route of tryptophan biosynthesis in plants is sufficient to supply a considerable amount of this essential amino acid for the biosynthesis of secondary metabolites. Despite their increased tryptamine content, the growth and development of the transgenic tobacco plants expressingtdc appeared normal.  相似文献   
130.
Abstract The polyhydroxyalkanoic acid (PHA) synthase gene ( phaCAc ) of a species of Acinetobacter isolated from an activated sludge treatment plant was cloned by heterologous complementation in a poly-β-hydroxybutyrate (PHB) negative mutant of Alcaligenes eutrophus . Nucleotide sequence analysis of phaCAc revelaed an open reading frame of 1770 bp with potential to encode a 67.7 kDa protein. The deduced amino acid sequence displays high similarity to other PHA synthase proteins. Probing with an internal region of phaCAc revealed that the PHA sythase gene may be present in more than one copy and may occur at both plasmid and chromosomal locations in Acinetobacter spp. This is the first organisms for which evidence has been presented to suggest that a gene involved in PHA metabolism is plasmid-encoded. Purification of PHB granules from sucrose gradients identified proteins of 38 kDa, 41 kDa and 64 kDa which may have a role in PHB metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号