首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17608篇
  免费   1250篇
  国内免费   2008篇
  2024年   58篇
  2023年   410篇
  2022年   509篇
  2021年   737篇
  2020年   690篇
  2019年   793篇
  2018年   703篇
  2017年   565篇
  2016年   553篇
  2015年   718篇
  2014年   788篇
  2013年   1124篇
  2012年   598篇
  2011年   738篇
  2010年   623篇
  2009年   747篇
  2008年   839篇
  2007年   839篇
  2006年   774篇
  2005年   708篇
  2004年   568篇
  2003年   606篇
  2002年   512篇
  2001年   349篇
  2000年   335篇
  1999年   371篇
  1998年   381篇
  1997年   322篇
  1996年   325篇
  1995年   301篇
  1994年   299篇
  1993年   281篇
  1992年   275篇
  1991年   227篇
  1990年   215篇
  1989年   210篇
  1988年   169篇
  1987年   182篇
  1986年   151篇
  1985年   192篇
  1984年   216篇
  1983年   133篇
  1982年   150篇
  1981年   136篇
  1980年   99篇
  1979年   101篇
  1978年   55篇
  1977年   56篇
  1976年   49篇
  1973年   26篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
21.
Recent advances in the fields of chromatography, mass spectrometry, and chemical analysis have greatly improved the efficiency with which carotenoids can be extracted and analyzed from avian plumage. Prior to these technological developments, Brush (1968) [1] concluded that the burgundy-colored plumage of the male pompadour Cotinga Xipholena punicea is produced by a combination of blue structural color and red carotenoids, including astaxanthin, canthaxanthin, isozeaxanthin, and a fourth unidentified, polar carotenoid. However, X. punicea does not in fact exhibit any structural coloration. This work aims to elucidate the carotenoid pigments of the burgundy color of X. punicea plumage using advanced analytical methodology. Feathers were collected from two burgundy male specimens and from a third aberrant orange-colored specimen. Pigments were extracted using a previously published technique (McGraw et al. (2005) [2]), separated by high-performance liquid chromatography (HPLC), and analyzed by UV/Vis absorption spectroscopy, chemical analysis, mass spectrometry, nuclear magnetic resonance (NMR), and comparison with direct synthetic products. Our investigation revealed the presence of eight ketocarotenoids, including astaxanthin and canthaxanthin as reported previously by Brush (1968) [1]. Six of the ketocarotenoids contained methoxyl groups, which is rare for naturally-occurring carotenoids and a novel finding in birds. Interestingly, the carotenoid composition was the same in both the burgundy and orange feathers, indicating that feather coloration in X. punicea is determined not only by the presence of carotenoids, but also by interactions between the bound carotenoid pigments and their protein environment in the barb rami and barbules. This paper presents the first evidence of metabolically-derived methoxy-carotenoids in birds.  相似文献   
22.
The collective redox activities of transition‐metal (TM) cations and oxygen anions have been shown to increase charge storage capacity in both Li‐rich layered and cation‐disordered rock‐salt cathodes. Repeated cycling involving anionic redox is known to trigger TM migration and phase transformation in layered Li‐ and Mn‐rich (LMR) oxides, however, detailed mechanistic understanding on the recently discovered Li‐rich rock‐salt cathodes is largely missing. The present study systematically investigates the effect of oxygen redox on a Li1.3Nb0.3Mn0.4O2 cathode and demonstrates that performance deterioration is directly correlated to the extent of oxygen redox. It is shown that voltage fade and hysteresis begin only after initiating anionic redox at high voltages, which grows progressively with either deeper oxidation of oxygen at higher potential or extended cycling. In contrast to what is reported on layered LMR oxides, extensive TM reduction is observed but phase transition is not detected in the cycled oxide. A densification/degradation mechanism is proposed accordingly which elucidates how a unique combination of extensive chemical reduction of TM and reduced quality of the Li percolation network in cation‐disordered rock‐salts can lead to performance degradation in these newer cathodes with 3D Li migration pathways. Design strategies to achieve balanced capacity and stability are also discussed.  相似文献   
23.
Peroxidase oxidation of o-dianisidine, 3,3′,5,5′-tetramethylbenzidine, and o-phenylenediamine in the presence of sodium dodecyl sulfate (SDS), an anionic surfactant, was spectrophotometrically studied. It was found that 0.1–100 mM SDS concentrations stabilize intermediates formed in the peroxidase oxidation of these substrates. The cause of the stabilization is an electrostatic interaction between positively charged intermediates and negatively charged surfactant.  相似文献   
24.
25.
An electrophoretic method has been devised to investigate the changes in the enzymes and isoenzymes of carbohydrate metabolism, upon adding glucose to derepressed yeast cell. (i) Of the glycolytic enzymes tested, enolase II, pyruvate kinase and pyruvate decarboxylase were markedly increased. This increase was accompanied by an overall increase in glycolytic activity and was prevented by cycloheximide, an inhibitor of protein synthesis. (ii) In contrast, respiratory activity decreased after adding glucose. This decrease was clearly shown to be the result of repression of respiratory enzymes. A rapid decrease within a few minutes of adding glucose, by analogy with the so-called ‘Crabtree effect’, was not observed in yeast. (iii) The gluconeogenic enzymes, fructose-1,6-bisphosphatase and malate dehydrogenase, which are inactivated after adding glucose, showed no significant changes in electrophoretic mobilities. Hence, there was no evidence of enzyme modifications, which were postulated as initiating degradation. However, it was possible to investigate cytoplasmic and mitochondrial malate dehydrogenase isoenzymes separately. Synthesis of the mitochondrial isoenzyme was repressed, whereas only cytoplasmic malate hydrogenase was subject to glucose inactivation.  相似文献   
26.
27.
28.
In this study we have measured, under experimental conditions which maintained efficient coupling, respiratory intensity, respiratory control, oxidative phosphorylation capacity and protonmotive force. Succinate cytochrome-c reductase and cytochrome-c oxidase activities were also studied. These investigations were carried out using kidney mitochondria from cyclosporine-treated rats (in vivo studies) and from untreated rats in the presence of cyclosporine (in vitro studies). Inhibition of respiratory intensity by cyclosporine did not exceed 21.1% in vitro and 15.9% in vivo. Since there was no in vitro inhibition of succinate cytochrome-c reductase and cytochrome-c oxidase activities, the slowing of electron flow observed can be interpreted as a consequence of an effect produced by cyclosporine between cytochromes b and c1. Cyclosporine had no effect on respiratory control either in vitro or in vivo. Statistically significant inhibition of the oxidative phosphorylation was observed both in vitro (6.6%) and in vivo (12.1%). Moreover, cyclosporine did not induce any change of membrane potential either in vivo or in vitro. Our findings show that cyclosporine is neither a protonophore, nor a potassium ionophore. In cyclosporine-treated rats we noticed a decrease of protein in subcellular fraction, including the mitochondrial fraction. The role of the inhibition respiratory characteristics by cyclosporine in nephrotoxicity in vivo must take account of these two parameters: inhibition of the respiratory characteristics measured in vitro and diminution of mitochondrial protein in cyclosporine-treated rats.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号