首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   22篇
  国内免费   92篇
  2024年   1篇
  2023年   4篇
  2022年   8篇
  2021年   9篇
  2020年   8篇
  2019年   11篇
  2018年   10篇
  2017年   5篇
  2016年   10篇
  2015年   11篇
  2014年   5篇
  2013年   6篇
  2012年   13篇
  2011年   10篇
  2010年   14篇
  2009年   26篇
  2008年   22篇
  2007年   24篇
  2006年   15篇
  2005年   15篇
  2004年   19篇
  2003年   7篇
  2002年   9篇
  2001年   3篇
  2000年   9篇
  1999年   9篇
  1998年   13篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   10篇
  1990年   5篇
  1989年   5篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1982年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有359条查询结果,搜索用时 421 毫秒
21.
Reciprocal hybrid formation of Spartina in San Francisco Bay   总被引:6,自引:0,他引:6  
Diversity in the tRNALEU1 intron of the chloroplast genome of Spartina was used to study hybridization of native California cordgrass, Spartina foliosa, with S. alterniflora, introduced to San Francisco Bay approximately 25 years ago. We sequenced 544 bases of the tRNALEU1 intron and found three polymorphic sites, a pyrimidine transition at site 126 and transversions at sites 382 and 430. Spartina from outside of San Francisco Bay, where hybridization between these species is impossible, gave cpDNA genotypes of the parental species. S. foliosa had a single chloroplast haplotype, CCT, and this was unique to California cordgrass. S. alterniflora from the native range along the Atlantic coast of North America had three chloroplast haplotypes, CAT, TAA, and TAT. Hybrids were discriminated by random amplified polymorphic DNA (RAPD) phenotypes developed in a previous study. We found one hybrid that contained a cpDNA haplotype unknown in either parental species (TCT). The most significant finding was that hybridization proceeds in both directions, assuming maternal inheritance of cpDNA; 26 of the 36 hybrid Spartina plants from San Francisco Bay contained the S. foliosa haplotype, nine contained haplotypes of the invading S. alterniflora, and one had the cpDNA of unknown origin. Furthermore, cpDNA of both parental species was distributed throughout the broad range of RAPD phenotypes, suggesting ongoing contributions to the hybrid swarm from both. The preponderance of S. foliosa cpDNA has entered the hybrid swarm indirectly, we propose, from F1s that backcross to S. foliosa. Flowering of the native precedes by several weeks that of the invading species, with little overlap between the two. Thus, F1 hybrids would be rare and sired by the last S. foliosa pollen upon the first S. alterniflora stigmas. The native species produces little pollen and this has low viability. An intermediate flowering time of hybrids as well as pollen that is more vigourous and abundant than that of the native species would predispose F1s to high fitness in a vast sea of native ovules. Thus, spread of hybrids to other S. foliosa marshes could be an even greater threat to the native species than introductions of alien S. alterniflora.  相似文献   
22.
Hybridization with abundant invaders is a well-known threat to rare native species. Our study addresses mechanisms of hybridization between a rare invader, smooth cordgrass (Spartina alterniflora) and the common native California cordgrass (S. foliosa) in the salt marshes of San Francisco Bay. These species are wind-pollinated and flower in summer. The invader produced 21-fold the viable pollen of the native, and 28% of invader pollen germinated on native stigmas (1.5-fold the rate of the native's own pollen). Invader pollen increased the seed set of native plants almost eightfold over that produced with native pollen, while native pollen failed to increase seed set of the invader. This pollen swamping and superior siring ability by the invader could lead to serial genetic assimilation of a very large native population. Unlike California cordgrass, smooth cordgrass can grow into low intertidal habitats and cover open mud necessary to foraging shorebirds, marine life, navigation, and flood control in channels. To the extent that intertidal range of the hybrids is more similar to the invader than to the native parent, introgression will lead to habitat loss for shore birds and marine life as well to genetic pollution of native California cordgrass.  相似文献   
23.
Aim To examine the distribution and structure of genetic variation among native Spartina alterniflora and to characterize the evolutionary mechanisms underlying the success of non‐native S. alterniflora. Location Intertidal marshes along the Atlantic, Gulf and Pacific coasts of North America. Methods amova , parsimony analysis, haplotype networks of chloroplast DNA (cpDNA) sequences, neighbour‐joining analysis, Bayesian analysis of population structure, and individual assignment testing were used. Results Low levels of gene flow and geographic patterns of genetic variation were found among native S. alterniflora from the Atlantic and Gulf coasts of North America. The distribution of cpDNA haplotypes indicates that Atlantic coast S. alterniflora are subdivided into ‘northern’ and ‘southern’ groups. Variation observed at microsatellite loci further suggests that mid‐Atlantic S. alterniflora are differentiated from S. alterniflora found in southern Atlantic and New England coastal marshes. Comparisons between native populations on the Atlantic and Gulf coasts and non‐native Pacific coast populations substantiate prior studies demonstrating reciprocal interspecific hybridization in San Francisco Bay. Our results corroborate historical evidence that S. alterniflora was introduced into Willapa Bay from multiple source populations. However, we found that some Willapa Bay S. alterniflora are genetically divergent from putative sources, probably as a result of admixture following secondary contact among previously allopatric native populations. We further recovered evidence in support of models suggesting that S. alterniflora has secondarily spread within Washington State, from Willapa Bay to Grays Harbor. Main conclusions Underlying genetic structure has often been cited as a factor contributing to ecological variation of native S. alterniflora. Patterns of genetic structure within native S. alterniflora may be the result of environmental differences among biogeographical provinces, of migration barriers, or of responses to historical conditions. Interactions among these factors, rather than one single factor, may best explain the distribution of genetic variation among native S. alterniflora. Comprehensive genetic comparisons of native and introduced populations can illustrate how biological invasions may result from dramatically different underlying factors – some of which might otherwise go unrecognized. Demonstrating that invasions can result from several independent or interacting mechanisms is important for improving risk assessment and future forecasting. Further research on S. alterniflora not only may clarify what forces structure native populations, but also may improve the management of non‐native populations by enabling post‐introduction genetic changes and the rapid evolution of life‐history traits to be more successfully exploited.  相似文献   
24.
Aim During the last 20 years, the austral cordgrass Spartina densiflora has been recorded aggressively invading estuarine environments in the USA, Spain and Morocco. Whereas this species is one of the three most widely distributed worldwide, it is among the least studied within the genus. The objective of this work is to integrate baseline information about the taxonomy, global distribution, centre of origin, and general ecology of S. densiflora in native and invaded marshes worldwide in order to help to strengthen management efforts currently directed at controlling or eradicating it from locations where it has been introduced. Location World‐wide. Methods I review, update and discuss relevant information about S. densiflora published in peer‐reviewed papers, including those in journals with limited international distribution. I also review theses and major technical reports containing critical up‐to‐date information. Results This work indicates that, although S. densiflora remains in need of thorough scientific attention, key information on its taxonomy, distribution and invasive biology has been overlooked because it was published in languages other than English, and/or in journals with restricted distribution. Main conclusions Spartina densiflora seems to have originated along the east coast of South America; today, however, many other regions worldwide serve as donors for this invasive species, including Chile, the USA, Spain and Morocco. Spartina densiflora is a bioengineer organism, tolerant of a broad spectrum of environmental conditions and able to re‐shape the structure of invaded communities not just in mudflats, but also on sandy, muddy, and rocky shores as well as on cobble beaches. Only by integrating local‐scale research conducted in different geographical regions will we be able to understand the between‐site variations of its biological cycle, which in turn will aid in the design of more effective conservation strategies.  相似文献   
25.
Aim To produce an inventory of south‐west Atlantic saltmarshes (from latitude 31°48′ S to 43°20′ S) using remotely sensed images and field sampling; to quantify their total area; to describe the biogeographical variation of the main habitats characterized by dominant vascular plants, in relation to major environmental factors; to test the hypothesis of predominance of the reversal pattern in plant distribution (sedges and grasses dominate the lower, regularly inundated zones, while the upper zones are occupied by more halophytic species) previously described; and to compare these south‐west Atlantic saltmarshes with others world‐wide. Location South‐western Atlantic saltmarshes Methods Field samples of dominant emergent plant species positioned by the global positioning system (GPS) were obtained from most coastal saltmarshes (14) between southern Brazil and northern Patagonia, Argentina. Landsat satellite images were obtained and coastal saltmarsh habitats were quantified by supervised classification, utilizing points gathered in the field. Results Three main plant species dominated the low and middle intertidal saltmarsh, Spartina alterniflora Loesel., Spartina densiflora Brong. and Sarcocornia perennis (P. Mill.) A.J. Scott. The total area of the studied coastal saltmarshes was 2133 km2, comprising 380 km2 of Sp. alterniflora marsh, 366 km2 of Sp. densiflora marsh, 746 km2 of Sar. perennis marsh and 641 km2 of brackish marsh (dominated by Juncus acutus L., Juncus kraussii Hochst., Scirpus maritimus L., Scirpus americanus Pers. and Phragmites australis (Cav.) Trin.). Cluster analysis showed three habitat types: saltmarshes dominated by (1) Sp. densiflora and brackish species,(2) Sp. alterniflora and Sar. perennis and (3) Sp.densiflora only. The analysis of abiotic variables showed significant differences between groups of habitats and coordinated gradients of the abiotic variables. The south‐west Atlantic coast showed decreasing mean annual rainfall (1200 to 196 mm) and increasing mean tidal amplitude (< 0.5 to > 2.5 m) from latitude 31° to 43°. Main conclusions South‐west Atlantic saltmarshes are globally important by virtue of their total extent. Remote sensing showed that the reversal pattern in plant distribution is not widespread. Indeed, south‐west Atlantic saltmarshes are better characterized by the presence of the halophytic genera Spartina and Sarcocornia. Our results support the interpretation that south‐west Atlantic saltmarshes constitute a class of temperate type (sensu Adam, 1990 ) with transitional characteristics between Australasian–South African saltmarshes and west Atlantic saltmarshes.  相似文献   
26.
The role of positive interactions is often crucial in communities with intense abiotic stress such as intertidal environments. Grasses acting as ecosystem engineers, for example, may ameliorate intertidal harsh physical conditions and modify the community structure. The mud snails Heleobia australis d'Orbigny frequently inhabit the SW Atlantic marshes, mainly associated to intertidal marsh plants (mainly the smooth cordgrass Spartina alterniflora Loisel) probably due to the plant indirect effects. The purpose of this work was to investigate the magnitude of these association and the processes that generate the pattern. Samples of the snail abundance in six SW Atlantic coastal marshes show that H. australis is associated to coastal areas of low energy and low or none freshwater input. This result is important because this species is being used as bioindicator of coastal estuarine systems during the Holocene. Thus the paleontological interpretation based on this species should be revised. Within the studied areas, snails are associated to intertidal marsh plants. However, stable isotope analysis shows that neither plant nor their epiphytes are their main food sources. Field experiments show that snails actively select areas with plants, although tethering experiments show that plants do not provide shelter from predators. However, plants do buffer physical stress factors such as temperature, which generate important mortality outside plants covered areas. These positive interactions have large effects on H. australis distributions in marsh communities; increasing the habitats available for colonization and affecting their local distribution.  相似文献   
27.
Anthropogenic habitat fragmentation is increasingly problematic in both terrestrial and aquatic systems. Fragmentation reduces the size of habitat patches, so examining the effect of patch size on community structure can provide insight into the potential effects of fragmentation. In this study, we examined the effect of habitat size on the density of Spartina alterniflora shoots in tidal saltwater marshes, as well as on the two predominant macrofaunal species, the marsh periwinkle Littoraria irrorata and fiddler crabs Uca spp. We estimated the density of shoots in three different marsh habitats, (1) large island marshes, (2) small island marshes, and (3) large fringing marshes, in Indian Field Creek, York River, Chesapeake Bay. We manipulated shoot density in each of the marsh types to distinguish between the effects of marsh grass density and marsh type on crab and Littoraria densities in the system. We found significant differences in grass density among the three marsh types as well as significant species-specific effects of grass density, marsh type, and distance from edge on faunal abundance. Decreasing the shoot density resulted in a decrease in Littoraria density in the large marshes. Littoraria density increased with distance from edge in the small marshes and in the first 5 m of the fringing marshes, then decreased with distance from edge after 5 m in the fringing marshes. Shoot density had a negative effect on crabs in both the large and small marshes. These results suggest that fragmentation would have a negative effect on the community structure by lowering the densities of both the flora and fauna.  相似文献   
28.
崇明东滩自然保护区盐沼植被的时空动态   总被引:8,自引:0,他引:8  
黄华梅  张利权  袁琳 《生态学报》2007,27(10):4166-4172
盐沼植被是滩涂湿地的重要组成部分,其动态变化直接影响着湿地的生态服务功能和价值。通过对1998~2005年间4景不同时相的LandsatTM遥感影像的解译分析,结合历史资料数据和近年来的现场调查,分析了崇明东滩鸟类自然保护区自建立以来,盐沼植被的时空演替动态过程。结果显示,随着滩涂的淤涨,东滩盐沼植被的面积从1998年的2478.32hm2增加到2005年的4687.74hm2,而互花米草(Spartina alterniflora)自人为引入至2005年,其面积已增加到1283.4hm2,其增加速率显著高于土著种芦苇(Phragmites australis)和海三棱藨草(Scirpus mariqueter),并且已在东滩保护区相当区域内形成单优势种群落。受1998年和2001年两次高滩围垦和互花米草入侵影响,崇明东滩的芦苇群落面积大大减少,虽随着滩涂的淤涨,芦苇群落的面积逐年有所增加,但增加的速度缓慢。互花米草有着更广的生态幅和竞争优势,是滩涂中扩散最快的植被,而淤涨型滩涂为其提供了可扩张的空生态位,如不加以控制和治理,其快速扩散将会对崇明东滩保护区的生态系统造成更大的威胁和影响。  相似文献   
29.
芦苇、互花米草的生长和繁殖对盐分胁迫的响应   总被引:1,自引:0,他引:1  
对2种海滨植物——土著种芦苇(Phragmites australis)和外来种互花米草(Sparti-na alterniflora)在淡水、中盐度(15‰)和高盐度(30‰)环境下生长和有性繁殖特征及其年际动态进行了研究,以期探索海滨植物对盐分胁迫的适应机制。结果表明:2年中各盐度处理下互花米草地上部分生物量均高于芦苇,芦苇和互花米草地上部分生物量、株高和分蘖数均随着盐度的升高而显著下降。芦苇第1年没有开花;第2年,只有淡水和中盐度处理下的芦苇开花。各盐分梯度下,第1年互花米草的开花株数没有显著差异,但花序重量在高盐度条件下显著下降;第2年高盐胁迫仍然抑制了互花米草的繁殖。第1年各处理下的芦苇株高均低于互花米草,但第2年淡水和中盐环境中的芦苇株高高于互花米草。除了高盐处理下的芦苇,第2年这2种植物地上部分生物量、株高、开花株数、花序重量显著高于第1年。与芦苇相比,互花米草表现出较高的生长能力和耐盐能力;2种植物的生长和繁殖的能力随着定居时间的增加而提高,但高盐胁迫抑制了芦苇第2年的增长;芦苇第2年在淡水和中盐度条件下表现出株高上的优势。  相似文献   
30.
通过栽培实验研究了高、中、低不同养分水平对外来入侵种互花米草(Spartina alterniflora)表型可塑性的影响。结果表明:随着养分含量的增加,互花米草分枝强度不断增加,低养分处理与中、高养分处理间差异显著;间隔子长度随着养分含量的增加而增加,但分枝角度不受养分含量的影响;互花米草生物量分配格局显著受养分水平的影响,随着养分的降低,互花米草对地上部分(茎和叶)的生物量投资减小,而对地下部分(根和根茎)的生物量投资增加。这些结果说明,养分水平对互花米草的克隆生长有显著影响,互花米草对不同的养分条件表现出较强的可塑性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号