首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   12篇
  国内免费   3篇
  2024年   2篇
  2023年   5篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   7篇
  2013年   5篇
  2012年   4篇
  2011年   4篇
  2010年   7篇
  2009年   2篇
  2008年   7篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   6篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1998年   2篇
  1997年   6篇
  1992年   2篇
  1987年   2篇
  1986年   1篇
  1985年   12篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有124条查询结果,搜索用时 31 毫秒
11.
As part of our efforts to identify the possible role of polyamines (PAs) in silymarin (Sm) production, the effects of calcium deprivation on cell growth and on endogenous PAs levels and Sm production by milk thistle (Silybum marianum (L.) Gaertn) grown in cell cultures were examined. Young cultured cells of the H2 line of S. marianum were transferred to a medium without calcium and with ethylene glycol-bis-(β-aminoethyl) ether-N,N,N′,N′-tetraacetic acid present to chelate any free calcium in order to analyze the effects of this medium on the levels of PAs and Sm produced by the cells. During the 17 days of exposure to this calcium-free medium most of the cell populations were in the G0/G1 phase (from day 7 to day 14 of culture) while PA levels underwent a progressive decline up to day 17, after which they were no longer detectable. We observed that putrescine (Put) accumulation was always lower than that observed under normal conditions. The lack of calcium in the MS medium advances the onset of the stationary phase, whose beginning is marked by an increase in the Put/spermidine (Spd) index, raising the production of Sm; the suspensions were productive for a longer time and hence produced more of the substance. Our results indicate that under stress conditions the production of Sm in young-cell suspensions of S. marianum is not associated with high levels of PAs in the medium – contrary to what one would expect – allowing us to conclude that growth inhibition appears to be the factor responsible for the maximum Sm accumulation while PAs are not directly involved in the Sm synthesis pathway by milk thistle grown in culture.  相似文献   
12.
13.
Transport of a nitrate analogue, 36Cl-ClO3, was examined in two diatoms, Skeletonema costatum (Greve.) Cleve and Nitzschia closterium (Ehrenb) W. Sm. A dinoflagellate, Gonyaulax polyedra did not transport ClO3. Transport of 36Cl-ClO3 by diatoms appeared to be active and showed saturation kinetics. The data were fitted by Michaelis-Menten equation at all but the lowest chlorate concentrations (where plots of S vs. v showed a slight concave bend). Affinity of cells for nitrate was considerably higher than for chlorate. The Ki for nitrate inhibition of chlorate transport was calculated assuming competitive inhibition. Light had little or no effect on chlorate transport. Pulse-chase experiments demonstrated that (1) ClO3 (hence NO3) was stored in two intracellular compartments of equal size, (2) internal ClO3 was exchangeable with external ClO3 (rates of efflux and influx were measured), and (3) efflux of intracellular ClO3 showed transient states following a chase of ClO3 or NO3 which stabilized after 10–20 min. Transport of chlorate was a function of growth phase.  相似文献   
14.
15.
A deletion mutant that lacks the Psb30 protein, one of the small subunits of Photosystem II, was constructed in a Thermosynechococcus elongatus strain in which the D1 protein is expressed from the psbA3 gene (WT*). The ΔPsb30 mutant appears more susceptible to photodamage, has a cytochrome b559 that is converted into the low potential form, and probably also lacks the PsbY subunit. In the presence of an inhibitor of protein synthesis, the ?Psb30 lost more rapidly the water oxidation function than the WT* under the high light conditions. These results suggest that Psb30 contributes to structurally and functionally stabilise the Photosystem II complex in preventing the conversion of cytochrome b559 into the low potential form. Structural reasons for such effects are discussed.  相似文献   
16.
Yhc1 and U1-C are essential subunits of the yeast and human U1 snRNP, respectively, that stabilize the duplex formed by U1 snRNA at the pre-mRNA 5′ splice site (5′SS). Mutational analysis of Yhc1, guided by the human U1 snRNP crystal structure, highlighted the importance of Val20 and Ser19 at the RNA interface. Though benign on its own, V20A was lethal in the absence of branchpoint-binding complex subunit Mud2 and caused a severe growth defect in the absence of U1 subunit Nam8. S19A caused a severe defect with mud2▵. Essential DEAD-box ATPase Prp28 was bypassed by mutations of Yhc1 Val20 and Ser19, consistent with destabilization of U1•5′SS interaction. We extended the genetic analysis to SmD3, which interacts with U1-C/Yhc1 in U1 snRNP, and to SmB, its neighbor in the Sm ring. Whereas mutations of the interface of SmD3, SmB, and U1-C/Yhc1 with U1-70K/Snp1, or deletion of the interacting Snp1 N-terminal peptide, had no growth effect, they elicited synthetic defects in the absence of U1 subunit Mud1. Mutagenesis of the RNA-binding triad of SmD3 (Ser-Asn-Arg) and SmB (His-Asn-Arg) provided insights to built-in redundancies of the Sm ring, whereby no individual side-chain was essential, but simultaneous mutations of Asn or Arg residues in SmD3 and SmB were lethal. Asn-to-Ala mutations SmB and SmD3 caused synthetic defects in the absence of Mud1 or Mud2. All three RNA site mutations of SmD3 were lethal in cells lacking the U2 snRNP subunit Lea1. Benign C-terminal truncations of SmD3 were dead in the absence of Mud2 or Lea1 and barely viable in the absence of Nam8 or Mud1. In contrast, SMD3-E35A uniquely suppressed the temperature-sensitivity of lea1▵.  相似文献   
17.
Proteins of the Lsm family, including eukaryotic Sm proteins and bacterial Hfq, are key players in RNA metabolism. Little is known about the archaeal homologues of these proteins. Therefore, we characterized the Lsm protein from the haloarchaeon Haloferax volcanii using in vitro and in vivo approaches. H. volcanii encodes a single Lsm protein, which belongs to the Lsm1 subfamily. The lsm gene is co-transcribed and overlaps with the gene for the ribosomal protein L37e. Northern blot analysis shows that the lsm gene is differentially transcribed. The Lsm protein forms homoheptameric complexes and has a copy number of 4000 molecules/cell. In vitro analyses using electrophoretic mobility shift assays and ultrasoft mass spectrometry (laser-induced liquid bead ion desorption) showed a complex formation of the recombinant Lsm protein with oligo(U)-RNA, tRNAs, and an small RNA. Co-immunoprecipitation with a FLAG-tagged Lsm protein produced in vivo confirmed that the protein binds to small RNAs. Furthermore, the co-immunoprecipitation revealed several protein interaction partners, suggesting its involvement in different cellular pathways. The deletion of the lsm gene is viable, resulting in a pleiotropic phenotype, indicating that the haloarchaeal Lsm is involved in many cellular processes, which is in congruence with the number of protein interaction partners.  相似文献   
18.
The cytoplasmic region of the CD2 receptor of lymphocytes contains proline-rich motifs, which are involved in T cell activation and interleukin-2 production. An intracellular CD2 binding protein, CD2BP2, interacts with two tandem PPPPGHR segments of the CD2 tail. CD2BP2 contains a GYF (glycine-tyrosine-phenylalanine) domain that confers binding to these proline-rich sequences. Monoclonal antibody 3E10 that was previously raised against a peptide containing the CD2 PPPPGHR segment reacts with the native CD2 molecule and spliceosomal Sm B/B' proteins. To identify the exact epitope on the CD2 peptide recognized by 3E10, a phage-displayed combinatorial peptide library was used. Analysis of the selected clones revealed that the mAb 3E10 binds preferentially to the motif PxxPPGxR. Experiments using amino acid substitutions with synthetic peptides confirmed the reactivity of mAb 3E10 with this motif. In addition, we show that several similarities exist between this motif and the CD2BP2-GFY recognition motif PPGxR/K. Binding of antibody 3E10 indicates some degree of degeneracy, which is consistent with its ability to recognize structurally related polyproline-arginine motifs found in intracellular proteins including Sm B/B' proteins and other RNA binding proteins. Thus, mAb 3E10 can be used to specifically identify a sub-class of proline-rich motifs, and as such can be used to study the potential role of these proline-rich sequences in mediating protein-protein interactions.  相似文献   
19.
P Prentki  H M Krisch 《Gene》1982,17(2):189-196
The construction of a plasmid vector which facilitates the cloning and recovery of blunt-ended DNA fragments is described. This plasmid, called pHP34, differs from pBR322 by a 10-bp insertion which introduces a unique SmaI site immediately flanked by two EcoRI sites. Blunt-ended DNA fragments cloned in the SmaI site can be recovered by digestion with EcoRI. Small cloned fragments can be chemically sequenced using a strategy which does not require their purification. The use of a plasmid related to pHP34 for in vitro mutagenesis by the insertion of a DNA linker fragment conferring an antibiotic resistance is also discussed.  相似文献   
20.
Contemporary enzymes are highly efficient and selective catalysts. However, due to the intrinsically very reactive nature of active sites, gratuitous secondary reactions are practically unavoidable. Consequently, even the smallest cell, with its limited enzymatic repertoire, has the potential to carry out numerous additional, very likely inefficient, secondary reactions. If selectively advantageous, secondary reactions could be the basis for the evolution of new fully functional enzymes. Here, we investigated if Escherichia coli has cryptic enzymatic activities related to thiamin biosynthesis. We selected this pathway because this vitamin is essential, but the cell's requirements are very small. Therefore, enzymes with very low activity could complement the auxotrophy of strains deleted of some bona fide thiamin biosynthetic genes. By overexpressing the E. coli's protein repertoire, we selected yjbQ, a gene that complemented a strain deleted of the thiamin phosphate synthase (TPS)-coding gene thiE. In vitro studies confirmed TPS activity, and by directed evolution experiments, this activity was enhanced. Structurally oriented mutagenesis allowed us to identify the putative active site. Remote orthologs of YjbQ from Thermotoga, Sulfolobus, and Pyrococcus were cloned and also showed thiamin auxotrophy complementation, indicating that the cryptic TPS activity is a property of this protein family. Interestingly, the thiE- and yjbQ-coded TPSs are analog enzymes with no structural similarity, reflecting distinct evolutionary origin. These results support the hypothesis that the enzymatic repertoire of a cell such as E. coli has the potential to perform vast amounts of alternative reactions, which could be exploited to evolve novel or more efficient catalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号