首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31685篇
  免费   3213篇
  国内免费   3700篇
  2024年   54篇
  2023年   623篇
  2022年   639篇
  2021年   1105篇
  2020年   1181篇
  2019年   1419篇
  2018年   1140篇
  2017年   1340篇
  2016年   1359篇
  2015年   1312篇
  2014年   1685篇
  2013年   2290篇
  2012年   1487篇
  2011年   1617篇
  2010年   1376篇
  2009年   1849篇
  2008年   1885篇
  2007年   1906篇
  2006年   1611篇
  2005年   1436篇
  2004年   1264篇
  2003年   1123篇
  2002年   963篇
  2001年   925篇
  2000年   882篇
  1999年   772篇
  1998年   628篇
  1997年   549篇
  1996年   459篇
  1995年   436篇
  1994年   410篇
  1993年   334篇
  1992年   331篇
  1991年   324篇
  1990年   240篇
  1989年   210篇
  1988年   166篇
  1987年   169篇
  1986年   169篇
  1985年   127篇
  1984年   127篇
  1983年   93篇
  1982年   143篇
  1981年   88篇
  1980年   102篇
  1979年   64篇
  1978年   50篇
  1977年   29篇
  1976年   25篇
  1975年   21篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
Combining experimental evolution with whole‐genome resequencing is a promising new strategy for investigating the dynamics of evolutionary change. Published studies that have resequenced laboratory‐selected populations of sexual organisms have typically focused on populations sampled at the end of an evolution experiment. These studies have attempted to associate particular alleles with phenotypic change and attempted to distinguish between different theoretical models of adaptation. However, neither the population used to initiate the experiment nor multiple time points sampled during the evolutionary trajectory are generally available for examination. In this issue of Molecular Ecology, Orozco‐terWengel et al. (2012) take a significant step forward by estimating genome‐wide allele frequencies at the start, 15 generations into and at the end of a 37‐generation Drosophila experimental evolution study. The authors identify regions of the genome that have responded to laboratory selection and describe the temporal dynamics of allele frequency change. They identify two common trajectories for putatively adaptive alleles: alleles either gradually increase in frequency throughout the entire 37 generations or alleles plateau at a new frequency by generation 15. The identification of complex trajectories of alleles under selection contributes to a growing body of literature suggesting that simple models of adaptation, whereby beneficial alleles arise and increase in frequency unimpeded until they become fixed, may not adequately describe short‐term response to selection.  相似文献   
12.
Improving our knowledge of the links between ecology and evolution is especially critical in the actual context of global rapid environmental changes. A critical step in that direction is to quantify how variation in ecological factors linked to habitat modifications might shape observed levels of genetic variability in wild populations. Still, little is known on the factors affecting levels and distribution of genetic diversity at the individual level, despite its vital underlying role in evolutionary processes. In this study, we assessed the effects of habitat quality on population structure and individual genetic diversity of tree swallows (Tachycineta bicolor) breeding along a gradient of agricultural intensification in southern Québec, Canada. Using a landscape genetics approach, we found that individual genetic diversity was greater in poorer quality habitats. This counter-intuitive result was partly explained by the settlement patterns of tree swallows across the landscape. Individuals of higher genetic diversity arrived earlier on their breeding grounds and settled in the first available habitats, which correspond to intensive cultures. Our results highlight the importance of investigating the effects of environmental variability on individual genetic diversity, and of integrating information on landscape structure when conducting such studies.  相似文献   
13.
Emerging infectious diseases threaten a wide diversity of animals, and important questions remain concerning disease emergence in socially structured populations. We developed a spatially explicit simulation model to investigate whether—and under what conditions—disease-related mortality can impact rates of pathogen spread in populations of polygynous groups. Specifically, we investigated whether pathogen-mediated dispersal (PMD) can occur when females disperse after the resident male dies from disease, thus carrying infections to new groups. We also examined the effects of incubation period and virulence, host mortality and rates of background dispersal, and we used the model to investigate the spread of the virus responsible for Ebola hemorrhagic fever, which currently is devastating African ape populations. Output was analyzed using regression trees, which enable exploration of hierarchical and non-linear relationships. Analyses revealed that the incidence of disease in single-male (polygynous) groups was significantly greater for those groups containing an average of more than six females, while the total number of infected hosts in the population was most sensitive to the number of females per group. Thus, as expected, PMD occurs in polygynous groups and its effects increase as harem size (the number of females) increases. Simulation output further indicated that population-level effects of Ebola are likely to differ among multi-male–multi-female chimpanzees and polygynous gorillas, with larger overall numbers of chimpanzees infected, but more gorilla groups becoming infected due to increased dispersal when the resident male dies. Collectively, our results highlight the importance of social system on the spread of disease in wild mammals.  相似文献   
14.
1. There is ongoing controversy about whether biased sex ratios in diploid insect populations are real or an artefact caused by different behaviours and/or different catchability of the sexes. This was tested by monitoring two field and three semi-natural populations of the damselfly Lestes sponsa. 2. Capture–mark–recapture data showed that population size estimates were about twice as large for males as for females at both field sites. Independent estimates of the sex ratios based on total numbers of males and females captured supported the male bias. 3. Males had higher recapture probabilities than females due to longer times between successive visits in females. Because the same pattern was found in the semi-natural populations, the longer intervals in females are no artefact due to their lower detectability. 4. Theoretical models show that the strong temporary emigration of females tends, if anything, to overestimate female population sizes and that the heterogeneity of recapture probabilities observed in males tends to underestimate male population sizes. Hence, behavioural differences between the sexes do not cause an artificially male-biased sex ratio. 5. Spatial data show that operational sex ratios are male biased at the pond but become female biased in the plots further away from the shoreline; however because of the decrease in densities away from the shoreline, this does not result in a global even sex ratio. 6. Spatial data, temporary emigration patterns, and independent estimates suggest strongly that the male-biased sex ratios in mature damselfly populations are real.  相似文献   
15.
Using the fluorescent anion 8-anilino-1-naphthalenesulphonate (ANS) for determining the membrane surface potential necessitates that the intrinsic affinity constant Ki for the ANS sites be known. Two methods are presented which do not rely on a determination of Ki at high ionic strength. They are respectively applied to neutral membranes (egg phosphatidylcholine liposomes) and highly charged natural ones (horse bean microsomes and liposomes from their phospholipids). The value of Ki appears to be insensitive to the level of occupancy of the sites, the KCl concentration and the pH in large ranges. Furthermore, the classical Gouy-Chapman model seems to describe correctly the whole set of data, provided apparent mean molecular areas larger than the published crystallographic ones are admitted.  相似文献   
16.
1. Simple mechanical models (random walks and the 'gas model') were used to investigate the movement patterns and intergroup encounter rates of a high- and low-density subpopulation of Grey-Cheeked Mangabeys ( Cercocebus albigena johnstoni, Lydeker) at two sites in the Kibale Forest, Western Uganda.
2. Random walk simulations showed that the presence of conspecific groups could act as 'social barriers' which constrained group movements, and promoted high levels of site attachment to a specific home range area.
3. Encounter rate models showed that in the low-density subpopulation (Kanyawara), intergroup encounters occurred no more frequently than expected if groups were moving randomly and independently of each other. This was in contrast to previous analyses which suggested that Grey-Cheeked Mangabeys employed a social spacing mechanism (mediated by male loud calls) in order to reduce the frequency of encounter to below chance levels.
4. Encounters in the high-density subpopulation (Ngogo) were found to occur less frequently than expected at short range (within 100 m). This was suggested to be due to the operation of a territorial mate defence strategy by males at this site.  相似文献   
17.
18.
Elucidation of the pathogenesis in respiratory chain diseases is of great importance for developing specific treatments. The limitations inherent to the use of patient material make studies of human tissues often difficult and the mouse has therefore emerged as a suitable model organism for studies of respiratory chain diseases. In this review, we present an overview of the field and discuss in depth a few examples of animal models reproducing pathology of human disease with primary and secondary respiratory chain involvement.  相似文献   
19.
The presence of litter has the potential to alter the population dynamics of plants. In this paper, we explore the effects of litter on population dynamics using a simple experimental laboratory system with populations of the annual crucifer, Cardamine pensylvanica. Using a factorial experiment with four densities and three litter levels, we determined the effect of litter on biomass and plant fecundity, and the life stages responsible for these changes in yield. Although litter had significant effects on seed germination and on seedling survivorship, we show, using a population dynamics model, that these effects were not demographically significant. Rather, the potential effect of litter on population dynamics resulted almost entirely from its effect on biomass. Persistent litter suppressed plant biomass and apparently removed the direct density effect present in the absence of litter. Thus, litter changed the shape of the recruitment curve from slightly humped to asymptotic. In addition to changing the shape of the recruitment curve, litter reduced the carrying capacity of the populations. Thus, the population dynamics model indicated that not all statistically significant responses were dynamically significant. Given the potential complexity of litter effects, simple population models provide a powerful tool for understanding the potential consequences of short-term responses. Received: 8 September 1999 / Accepted: 5 April 2000  相似文献   
20.
A number of evolutionary hypotheses can be tested by comparing selective pressures among sets of branches in a phylogenetic tree. When the question of interest is to identify specific sites within genes that may be evolving differently, a common approach is to perform separate analyses on subsets of sequences and compare parameter estimates in a post hoc fashion. This approach is statistically suboptimal and not always applicable. Here, we develop a simple extension of a popular fixed effects likelihood method in the context of codon-based evolutionary phylogenetic maximum likelihood testing, Contrast-FEL. It is suitable for identifying individual alignment sites where any among the K2 sets of branches in a phylogenetic tree have detectably different ω ratios, indicative of different selective regimes. Using extensive simulations, we show that Contrast-FEL delivers good power, exceeding 90% for sufficiently large differences, while maintaining tight control over false positive rates, when the model is correctly specified. We conclude by applying Contrast-FEL to data from five previously published studies spanning a diverse range of organisms and focusing on different evolutionary questions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号