首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1087篇
  免费   71篇
  国内免费   16篇
  2024年   1篇
  2023年   17篇
  2022年   21篇
  2021年   31篇
  2020年   32篇
  2019年   33篇
  2018年   47篇
  2017年   23篇
  2016年   26篇
  2015年   29篇
  2014年   52篇
  2013年   76篇
  2012年   39篇
  2011年   48篇
  2010年   42篇
  2009年   49篇
  2008年   55篇
  2007年   64篇
  2006年   35篇
  2005年   40篇
  2004年   51篇
  2003年   35篇
  2002年   32篇
  2001年   31篇
  2000年   29篇
  1999年   23篇
  1998年   25篇
  1997年   13篇
  1996年   12篇
  1995年   15篇
  1994年   14篇
  1993年   14篇
  1992年   11篇
  1991年   12篇
  1990年   12篇
  1989年   10篇
  1988年   13篇
  1987年   11篇
  1986年   9篇
  1985年   11篇
  1984年   13篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
  1977年   2篇
  1976年   1篇
排序方式: 共有1174条查询结果,搜索用时 15 毫秒
71.
Sphingolipids represent a minor, but highly dynamic subclass of lipids in all eukaryotic cells. They are involved in functions that range from structural protection to signal transduction and protein sorting, and participate in lipid raft assembly. In polarized epithelial cells, which display an asymmetric apical and basolateral membrane surface, rafts have been proposed as a sorting principle for apical resident proteins, following their biosynthesis. However, raft-mediated trafficking is ubiquitous in cells. Also, sphingolipids per se, which are strongly enriched in the apical domain, are subject to sorting in polarity development. Next to the trans Golgi network, a subapical compartment called SAC or common endosome appears instrumental in regulating these sorting events.  相似文献   
72.
The sperm entry position (SEP) of the mouse egg, labelled by placing a bead at the fertilisation cone, tends to be associated with the first cleavage plane (Piotrowska and Zernicka-Goetz: Nature 409:517-521, 2001). Nevertheless, in up to one-fourth of embryos the cleavage furrow did not pass close to the bead, and following the division the bead marked the cleavage plane in only 60% of cases. This raised the question of whether such variability arose from the labelling itself or had a biological basis. The zona pellucida was not responsible for this effect because similar results were obtained in its presence or absence. However, this variability could be attributable to the large size of the fertilisation cone relative to the SEP. Therefore, we have developed a means of fluorescently labelling sperm that can record the exact site of its penetration when the label transfers to the egg surface. This approach indicates that the SEP marks the first cleavage in the great majority (88%) of embryos. In conclusion, direct sperm labelling shows precisely the correlation between the SEP and the first cleavage, although there is natural variability in this process.  相似文献   
73.
For a neuron to play its assigned role in a neural circuit, it has to extend elaborate projections, dendrites and axons, to make precise connections with specific target cells. The past decade has seen the identification of a vast diversity of molecules that assist in the guidance of axons toward their intended targets: guidance cues, growth cone receptors, signaling proteins (Tessier-Lavigne and Goodman, 1996; Song and Poo, 2001). But just how do all of these proteins work together to cause the axon to grow, stop, or turn in a specific direction? In this review, we examine this process from several different perspectives - cytoskeletal dynamics; biochemistry of intracellular signaling proteins; molecular analysis of axon guidance receptors - to try to collapse some of the apparent complexity of axon guidance into a more coherent picture. In particular, we will see how relatively simple and consistent manipulations of the kinetic constants of Rho family GTPases could account for many aspects of the cycle of actin dynamics that underlies axon growth and guidance. This review will intentionally be highly selective in its treatment of this subject in order to synthesize a simplified view that may be of value in directing further thinking and experiments.  相似文献   
74.
Tetrahymena thermophila cells have two types of polarized morphogenesis: divisional morphogenesis and oral reorganization (OR). The aim of this research is the analysis of cortical patterns of immunostaining during cell division and in OR using previously characterized antibodies against fenestrin and epiplasm B proteins. During cell division, the anarchic field of basal body proliferation of the new developing oral apparatus (AF) showed concomitant strong binding of the fenestrin antigen and withdrawal of a signal of the epiplasm B antigen. At a specific stage, the fenestrin antigen also appeared as a character of the anterior cortex pole, with a co-localized decrease in the detected epiplasm B antigen. The fenestrin antigen also showed a polarity of duplicating basal bodies in ciliary rows. Indirect immunofluorescence and immunogold labeling experiments were performed in the absence and presence of an inhibitor of activity of serine/threonine kinases, 6-dimethylaminopurine (6-DMAP) as an inducer of the oral replacement process. In the presence of 6-DMAP, one class of cells started OR, and some others were trapped and affected in cell division. Both types of cells showed an instability of oral structures and formed enlarged primordial oral fields. These anarchic fields (AFs) bind the fenestrin antigen, with disappearance of epiplasmic antigen staining. Only one protein (about 64 kDa) is detected in western blots by the anti-fenestrin antibody and it accumulated in 6-DMAP-treated cells that are involved in uncompleted morphogenetic activity. At a defined stage of oral development, both during cell division and in OR, the fenestrin antigen served as a marker of polarity of the cell of the anterior pole character.  相似文献   
75.
Previous studies of fibroblasts have demonstrated that recycling of endocytic receptors occurs through a default mechanism of membrane-volume sorting. Epithelial cells require an additional level of polar membrane sorting, but there are conflicting models of polar sorting, some suggesting that it occurs in early endosomes, others suggesting it occurs in a specialized apical recycling endosome (ARE). The relationship between endocytic sorting to the lysosomal, recycling and transcytotic pathways in polarized cells was addressed by characterizing the endocytic itineraries of LDL, transferrin (Tf) and IgA, respectively, in polarized Madin-Darby canine kidney (MDCK) cells. Quantitative analyses of 3-dimensional images of living and fixed polarized cells demonstrate that endocytic sorting occurs sequentially. Initially internalized into lateral sorting endosomes, Tf and IgA are jointly sorted from LDL into apical and medical recycling endosomes, in a manner consistent with default sorting of membrane from volume. While Tf is recycled to the basolateral membrane from recycling endosomes, IgA is sorted to the ARE prior to apical delivery. Quantifications of the efficiency of sorting of IgA from Tf between the recycling endosomes and the ARE match biochemical measurements of transepithelial protein transport, indicating that all polar sorting occurs in this step. Unlike fibroblasts, rab11 is not associated with Tf recycling compartments in either polarized or glass-grown MDCK cells, rather it is associated with the compartments to which IgA is directed after sorting from Tf. These results complicate a suggested homology between the ARE and the fibroblast perinuclear recycling compartment and provide a framework that justifies previous conflicting models of polarized sorting.  相似文献   
76.
This report investigated mechanisms responsible for failed Schwann cell myelination in mice that overexpress P(0) (P(0)(tg)), the major structural protein of PNS myelin. Quantitative ultrastructural immunocytochemistry established that P(0) protein was mistargeted to abaxonal, periaxonal, and mesaxon membranes in P(0)(tg) Schwann cells with arrested myelination. The extracellular leaflets of P(0)-containing mesaxon membranes were closely apposed with periodicities of compact myelin. The myelin-associated glycoprotein was appropriately sorted in the Golgi apparatus and targeted to periaxonal membranes. In adult mice, occasional Schwann cells myelinated axons possibly with the aid of endocytic removal of mistargeted P(0). These results indicate that P(0) gene multiplication causes P(0) mistargeting to mesaxon membranes, and through obligate P(0) homophilic adhesion, renders these dynamic membranes inert and halts myelination.  相似文献   
77.
Polarity-defective mutants of Aspergillus nidulans   总被引:4,自引:0,他引:4  
  相似文献   
78.
Retinal pigment epithelial (RPE) cells apically polarize proteins that are basolateral in other epithelia. This reversal may be generated by the association of RPE with photoreceptors and the interphotoreceptor matrix, postnatal expansion of the RPE apical surface, and/or changes in RPE sorting machinery. We compared two proteins exhibiting reversed, apical polarities in RPE cells, neural cell adhesion molecule (N-CAM; 140-kD isoform) and extracellular matrix metalloproteinase inducer (EMMPRIN), with the cognate apical marker, p75-neurotrophin receptor (p75-NTR). N-CAM and p75-NTR were apically localized from birth to adulthood, contrasting with a basolateral to apical switch of EMMPRIN in developing postnatal rat RPE. Morphometric analysis demonstrated that this switch cannot be attributed to expansion of the apical surface of maturing RPE because the basolateral membrane expanded proportionally, maintaining a 3:1 apical/basolateral ratio. Kinetic analysis of polarized surface delivery in MDCK and RPE-J cells showed that EMMPRIN has a basolateral signal in its cytoplasmic tail recognized by both cell lines. In contrast, the basolateral signal of N-CAM is recognized by MDCK cells but not RPE-J cells. Deletion of N-CAM''s basolateral signal did not prevent its apical localization in vivo. The data demonstrate that the apical polarity of EMMPRIN and N-CAM in mature RPE results from suppressed decoding of specific basolateral signals resulting in randomized delivery to the cell surface.  相似文献   
79.
Podocytes are unique cells that are decisively involved in glomerular filtration. They are equipped with a complex process system consisting of major processes and foot processes whose function is insufficiently understood (Mundel, P., and W. Kriz. 1995. Anat. Embryol. 192:385–397). The major processes of podocytes contain a microtubular cytoskeleton. Taking advantage of a recently established cell culture system for podocytes with preserved ability to form processes (Mundel, P., J. Reiser, A. Zúñiga Mejía Borja, H. Pavenstädt, G.R. Davidson, W. Kriz, and R. Zeller. 1997b. Exp. Cell Res. 36:248–258), we studied the functional significance of the microtubular system in major processes. The following data were obtained: (a) Microtubules (MTs) in podocytes show a nonuniform polarity as revealed by hook-decoration. (b) CHO1/ MKLP1, a kinesin-like motor protein, is associated with MTs in podocytes. (c) Treatment of differentiating podocytes with CHO1/MKLP1 antisense oligonucleotides abolished the formation of processes and the nonuniform polarity of MTs. (d) During the recovery from taxol treatment, taxol-stabilized (nocodazole- resistant) MT fragments were distributed in the cell periphery along newly assembled nocodazole-sensitive MTs. A similar distribution pattern of CHO1/MKLP1 was found under these circumstances, indicating its association with MTs. (e) In the recovery phase after complete depolymerization, MTs reassembled exclusively at centrosomes. Taken together, these findings lead to the conclusion that the nonuniform MT polarity in podocytes established by CHO1/MKLP1 is necessary for process formation.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号