排序方式: 共有25条查询结果,搜索用时 0 毫秒
21.
In this work we describe the production of site-specific biotinylated human myeloid differentiation factor 88 (MyD88). A vector
containing a coding sequence for a peptide derived from the carboxyl terminus of the Klebsiella pneumoniae oxalacetate decarboxylase α subunit was used to allow expression and biotinylation of MyD88 in Drosophila melanogaster Schneider 2 cell cytoplasm. As estimated by a comparison of Schneider 2 lysate with standard protein, the maximum expression
level was 1.3 μg 107 cells−1. About 4 mg of biotinylated protein was purified by affinity chromatography on monomeric avidin from a I-L culture. Exogenous
biotin added to the culture medium increased the biotinylation efficiency of the expressed protein. Biotinylated MyD88 produced
in Drosophila cells was able to precipitate recombinant MyD88 expressed in human embryonic kidney cells. The stable expression of MyD88
in Drosophila Schneider 2 cells offers a convenient and attractive method for large-scale production, which may be required to clarify
the role of MyD88 in the inflammatory response. Moreover, site-specific biotinylation of MyD88 provides a useful tag for interaction
assays where high sensitivity is required. 相似文献
22.
The body wall muscles in the Drosophila larva arise from interactions between Duf/Kirre and Irregular chiasm C-roughest (IrreC-rst)-expressing founder myoblasts and sticks-and-stones (SNS)-expressing fusion competent myoblasts in the embryo. Herein, we demonstrate that SNS mediates heterotypic adhesion of S2 cells with Duf/Kirre and IrreC-rst-expressing S2 cells, and colocalizes with these proteins at points of cell contact. These properties are independent of their transmembrane and cytoplasmic domains, and are observed quite readily with GPI-anchored forms of the ectodomains. Heterotypic interactions between Duf/Kirre and SNS-expressing S2 cells occur more rapidly and to a greater extent than homotypic interactions with other Duf/Kirre-expressing cells. In addition, Duf/Kirre and SNS are present in an immunoprecipitable complex from S2 cells. In the embryo, Duf/Kirre and SNS are present at points of contact between founder and fusion competent cells. Moreover, SNS clustering on the cell surface is dependent on Duf/Kirre and/or IrreC-rst. Finally, although the cytoplasmic and transmembrane domains of SNS are expendable for interactions in culture, they are essential for fusion of embryonic myoblasts. 相似文献
23.
Yokomizo AY Jorge SA Astray RM Fernandes I Ribeiro OG Horton DS Tonso A Tordo N Pereira CA 《Biotechnology journal》2007,2(1):102-109
Recombinant rabies virus glycoprotein (rRVGP) was expressed in Drosophila melanogaster Schneider 2 (S2) cells. The cDNA encoding the entire RVGP gene was cloned in an expression plasmid under the control of the constitutive actin promoter (Ac), which was co-transfected into S2 cells together with a hygromycin selection plasmid. Selected S2 cell populations (S2AcRVGP) had a decreased ability to grow and consume substrates, when compared to the non-transfected cells (S2). They were shown, by PCR, to express the RVGP gene and mRNA and, by immunoblotting, to synthesize the rRVGP in its expected molecular mass of 65 kDa. ELISA kinetic studies showed the rRVGP expression in cell lysates and supernatants attaining concentrations of 300 microg/L. By flow cytometry analysis, about 30% of the cells in the co-transfected populations were shown to express the rRVGP. Cell populations selected by limiting dilution expressed higher rRVGP yields. Mice immunized with rRVGP were shown to synthesize antibodies against rabies virus and be protected against experimental infection with rabies virus. The data presented here show that S2 cells can be suitable hosts for the rRVGP expression, allowing its synthesis in a high degree of physical and biological integrity. 相似文献
24.
Parameters for storage, lysis and concentration of Drosophila melanogaster Schneider 2 (S2AcRVGP) cells expressing the recombinant rabies virus glycoprotein (RVGP) were studied with regard to RVGP quantification by ELISA, for productivity evaluation and future purification. Lysis buffers were formulated with Tris, NaCl, glycerol, EDTA, KCl, Na(2)PO(4), MgCl(2), PMSF and NP-40 or CHAPS. S2AcRVGP cells (10(7) cells at the exponential growth phase) were frozen at -20 degrees C as a dry pellet, suspended in buffer (B) formulations or after treatment with lysis buffer (LB) formulations. They were then thawed as cell pellets or with B formulations or PBS at 4 degrees C or at room temperature and then lysed with LB formulations. For RVGP quantification by ELISA, a protocol was chosen of cell preparation including cell freezing as dry pellet, cell thawing at 4 degrees C with B4 (Tris, NaCl, MgCl(2), PMSF) and cell lysis with the LB4 (B4 + NP-40) since it fulfilled requirements of high RVGP detection, and was easily performed with mixtures freezing quickly, and a cost-saving LB formulation could be used. Using these established conditions, we examined the optimal cell concentration for RVGP quantification by ELISA. Results showed that an increase in the RVGP detection (from 62.5 to 1083 ng/10(7) cells) paralleled a decrease in the cell number (3 x 10(7) - 10(5) cells) used. The NP-40 concentration present in the LB4 was further investigated as a function of the cell number used for sample preparation. Previous results were confirmed indicating that higher NP-40 concentrations led to a decreased detection of RVGP. Altogether our data clearly pointed out the crucial effects of cell freeze, thaw, lysis and concentration on immune detection of recombinant membrane glycoproteins and can be useful as a guideline for sample preparation for this purpose. 相似文献
25.
Zoltan Bozoky Julia Dancsok Eva Klement Peter Friedrich 《Archives of biochemistry and biophysics》2009,481(2):219-225
Calpains are cysteine proteases involved in a number of physiological and pathological processes, yet our knowledge of substrates cleaved in vivo, in intact cells, is scarce. In this work we made an attempt to develop a technique for finding calpain substrates in intact Drosophila Schneider S2 cells. The procedure consists in comparative 2D gelelectrophoresis: three identical samples were treated in different ways: A (control, no addition), B, activated (Ca2+ and ionomycin added), C, inactivated (additions as in B + specific calpain inhibitor). 2D gel pattern were analyzed by densitometry. Spots showing density relation A > B << C were identified by mass spectroscopy. In a typical run, 11 candidate substrates were recognized; out of these, four were randomly selected: all four were verified to be calpain substrates, by digestion of the recombinant protein with recombinant calpain. 相似文献