首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5165篇
  免费   648篇
  国内免费   1424篇
  2024年   7篇
  2023年   114篇
  2022年   102篇
  2021年   168篇
  2020年   190篇
  2019年   244篇
  2018年   227篇
  2017年   239篇
  2016年   240篇
  2015年   231篇
  2014年   242篇
  2013年   316篇
  2012年   242篇
  2011年   287篇
  2010年   230篇
  2009年   280篇
  2008年   293篇
  2007年   324篇
  2006年   321篇
  2005年   225篇
  2004年   198篇
  2003年   195篇
  2002年   183篇
  2001年   173篇
  2000年   171篇
  1999年   153篇
  1998年   151篇
  1997年   134篇
  1996年   120篇
  1995年   109篇
  1994年   90篇
  1993年   96篇
  1992年   93篇
  1991年   103篇
  1990年   62篇
  1989年   82篇
  1988年   49篇
  1987年   65篇
  1986年   63篇
  1985年   85篇
  1984年   72篇
  1983年   47篇
  1982年   46篇
  1981年   60篇
  1980年   34篇
  1979年   43篇
  1978年   16篇
  1977年   11篇
  1976年   5篇
  1958年   2篇
排序方式: 共有7237条查询结果,搜索用时 593 毫秒
121.
水杉人工林树冠结构及生物生产力的研究   总被引:17,自引:2,他引:15  
研究了水杉人工林的树冠结构和林分生物生产力。结果表明,不同密度及林龄的林分树冠结构存在较大差异,随着树冠部位上升和林分密度增大,分枝角度逐渐减小;径阶大小与枝叶率成反比,与树冠重量成正比,径阶增大,树冠最大叶量层的集团上移,有效光合面积相对减少,树冠结构的变化直接影响到林分的生物量生产、分配分配和经济生物量,林分干、枝、叶的干物质累积趋势可用Richard方程描述;林龄增大,分配到主干的生物量比例  相似文献   
122.
Abstract. In order to explore whether seed size affects plant response to elevated CO2, plants grown from red oak (Quercus rubra L.) acorns were studied for differences in their first year response to CO2 concentrations of 350 and 700 μl/l. Overall, at final harvest, total biomass of plants grown in elevated CO2 were 47 % larger than that of plants grown in ambient CO2. There were significant interactions between CO2 treatments and initial acorn mass for total biomass, as well as for root, leaf, and stem biomass. Although total biomass increased with increasing initial acorn mass for both high and ambient CO2 plants, high CO2 plants exhibited a greater increase than ambient CO2 plants, as indicated by a steeper slope in high CO2 plants. However, CO2 levels did not affect biomass partitioning traits, such as root/shoot ratio, leaf, stem, and root weight ratios, and leaf area ratio. These results suggest that variation in seed size or initial plant size can cause intraspecific variation in response to elevated CO2.  相似文献   
123.
Seasonality in fine root standing crop and production was studied in two tropical dry evergreen forests viz., Marakkanam reserve forest (MRF) and Puthupet sacred grove (PSG) in the Coromandel coast of India. The study extended from December 89 to December 91 in MRF and from August 90 to December 91 in PSG with sampling at every 2 months. Total fine interval. Mean fine root standing crop was 134 g m−2 in MRF and 234 g m−2 in PSG. root production was 104 g m−2 yr−1 in MRF and 117 g m−2 yr−1 in PSG. These estimates lie within the range for fine roots reported for various tropical forests. Rootmass showed a pronounced seasonal pattern with unimodal peaks obtained during December in the first year and from October–December in the second year in MRF. In PSG greater rootmass was noticed from June–October than other times of sampling. The total root mass in MRF ranged from 114 to 145 g m−2 at the 13 sampling dates in the three sites. The live biomass fraction of fine roots in MRF ranged from 46 to 203 g m−2 and in PSG it ranged from 141 to 359 g mm−2 during the study periods. The dead necromass fraction of fine roots ranged from 6 to 37 g m−2 in MRF and from 12 to 66 g m−2 in PSG. Fine root production peaked during December in both the forest sites. The necromass fraction of newly produced roots was negligible. Total N was slightly greater in PSG than in MRF. Whereas total P level was almost similar in both the sites. The study revealed that season and site characteristics influenced fine root system.  相似文献   
124.
The relationship of the macrozoobenthos biomass in the littoral area to the yearly fluctuation in water level and the characteristics of the area or lake are studied using data collected from sheltered bays in regulated and natural waters. Most of the lakes were clear and oligotrophic. The benthos biomass at all depths in the littoral decreased with increased water level fluctuation, provided that the transparency of the water was uniform.The macrozoobenthos biomass in the 0–3 m depth zone could be predicted fromlog macrozoobenthos biomass (mg ODW) m-2=4.25-1.33 (log Biomass Index) in which the Biomass Index is calculated as% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOqaiaabM% gacaqGVbGaaeyBaiaabggacaqGZbGaae4CaiaabccacaqGjbGaaeOB% aiaabsgacaqGLbGaaeiEaiaab2dacaqGGaGaaeiiaiaabccacaqGGa% GaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca% caqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai% aabccadaWcaaabaeqabaGaae4DaiaabggacaqG0bGaaeyzaiaabkha% caqGGaGaaeiBaiaabwgacaqG2bGaaeyzaiaabYgacaqGGaGaaeOzai% aabYgacaqG1bGaae4yaiaabshacaqG1bGaaeyyaiaabshacaqGPbGa% ae4Baiaab6gacaqGGaGaaeyAaiaab6gacaqGGaGaaeiDaiaabIgaca% qGLbGaaeiiaiaabchacaqGYbGaaeyzaiaabAhacaqGPbGaae4Baiaa% bwhacaqGZbGaaeiiaiaabMhacaqGLbGaaeyyaiaabkhaaeaacaqGOa% GaaeyBaiaabUdacaqGGaGaae4yaiaabggacaqGSbGaae4yaiaabwha% caqGSbGaaeyyaiaabshacaqGLbGaaeizaiaabccacaqGMbGaaeOCai% aab+gacaqGTbGaaeiiaiaab2gacaqGVbGaaeOBaiaabshacaqGObGa% aeiBaiaabMhacaqGGaGaaeyBaiaabwgacaqGHbGaaeOBaiaabccaca% qG2bGaaeyyaiaabYgacaqG1bGaaeyzaiaabohacaqGPaaaaeaacaqG% tbGaaeyzaiaabogacaqGJbGaaeiAaiaabMgacaqGGaGaaeizaiaabM% gacaqGZbGaae4AaiaabccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyz% aiaabccacaqGPbGaaeOBaiaabccacaqG0bGaaeiAaiaabwgacaqGGa% Gaae4CaiaabggacaqGTbGaaeyzaiaabccacaqGVbGaaeiCaiaabwga% caqGUbGaaeiiaiaabEhacaqGHbGaaeiDaiaabwgacaqGYbGaaeiiai% aabohacaqGLbGaaeyyaiaabohacaqGVbGaaeOBaiaabccacaqGOaGa% aeyBaiaabMcaaaaccaGae8hiaaIaaKiEaiab-bcaGiaaigdacaaIWa% GaaGimaiaac6caaaa!CBD8!\[{\text{Biomass Index = }}\frac{\begin{gathered} {\text{water level fluctuation in the previous year}} \hfill \\ {\text{(m; calculated from monthly mean values)}} \hfill \\ \end{gathered} }{{{\text{Secchi disk value in the same open water season (m)}}}} \user1{x} 100.\]The whole illuminated littoral shifts due to water level fluctuation, which disturbs the zonation of the benthos. Such an increase or decrease in benthic biomass has been observed after one year of disturbance due to water level fluctuation. It need, however, a study based on the carefully planned and collected data, in which it can be taken account by a multivariate statistical analysis also the interactions between the important factors affected the littoral benthos.  相似文献   
125.
Mark Crane 《Hydrobiologia》1994,281(2):91-100
Gammarus pulex were sampled from five English streams during April 1992. The population density, number of precopula pairs and incidence of parasitic infection were recorded, and the biomass was estimated from subsamples by relating body area to dry weight. Physical and chemical measurements were taken from each stream. The abundance and standing crop biomass differed significantly between streams, probably due to the influence of pollutants or the physical structure of the stream bed. The size of individual G. pulex also differed significantly between streams, although there was no obvious causal explanation for this. Few individuals were visibly parasitised in any of the populations. Males were significantly larger than females, both in precopula pairs and in the general populations. The sex ratio differed between populations and may explain inter-stream differences in the relationship between precopula male and female size.  相似文献   
126.
Xylem parenchyma cells are situated around the (apoplastic) xylem vessels and are involved in the control of the composition of the xylem sap by exporting and resorbing solutes. We investigated properties of the K+ inward rectifier in the plasma membrane of these cells by performing patch clamp experiments on protoplasts in the whole-cell configuration. Inward currents were sensitive to the K+ channel blocker TEA+ at a high concentration (20 mm). Barium, another classical K+ channel blocker, inhibited K+ currents with a K i of about 1.3 mm. In contrast to guard cells, the cytosolic Ca2+ level proved to be ineffective in regulating the K+ conductance at hyperpolarization. External Ca2+ blocked currents weakly in a voltage-dependent manner. From instantaneous current-voltage curves, we identified a binding site in the channel pore with an electrical distance of about 0.2 to 0.5. Lanthanum ions reduced the inward current in a voltage-dependent manner and simultaneously displaced the voltage at which half of the channels are in the open state to more positive values. This finding was interpreted as resulting from a sum of two molecular effects, an interaction with the mouth of the channel that causes a reduction of current, and a binding to the voltage sensor, leading to a shielding of surface charges and, subsequently, a modulation of channel gating.A comparison between the K+ inward rectifier in xylem parenchyma cells, guard cells and KAT1 from Arabidopsis leads to the conclusion that these rectifiers form subtypes within one class of ion channels. The ineffectiveness of Ca2+ to control K+ influx in xylem parenchyma cells is interpreted in physiological terms.  相似文献   
127.
128.
Projected depletions in the stratospheric ozone layer will result in increases in solar ultraviolet-B radiation (290–320 nm) reaching the earth's surface, These increases will likely occur in concert with other environmental changes such as increases in atmospheric carbon dioxide concentrations. Currently very little information is available on the effectiveness of UV-B radiation within a CO2-enriched atmosphere, and this is especially true for trees. Loblolly pine (Pinus taeda L.) seedlings were grown in a factorial experiment at the Duke University Phytotron with either 0, 8.8 or 13.8 kJ m−2 of biologically effective UV-B radiation (UV-BBE). The CO2 concentrations used were 350 and 650 μmol mol−1. Measurements of chlorophyll fluorescence were made at 5-week intervals and photosynthetic oxygen evolution and leaf pigments were measured after 22 weeks, prior to harvest. The results of this study demonstrated a clear growth response to CO2 enrichment but neither photosynthetic capacity nor quantum efficiency were altered by CO2. The higher UV-B irradiance reduced total biomass by about 12% at both CO2 levels but biomass partitioning was altered by the interaction of CO2 and UV-B radiation. Dry matter was preferentially allocated to shoot components by UV-B radiation at 350 μmol mol−1 CO2 and towards root components at 650 μmol mol−1 CO2. These subtle effects on biomass allocation could be important in the future to seedling establishment and competitive interactions in natural as well as agricultural communities.  相似文献   
129.
Increased biomass production in terrestrial ecosystems with elevated atmospheric CO2 may be constrained by nutrient limitations as a result of increased requirement or reduced availability caused by reduced turnover rates of nutrients. To determine the short-term impact of nitrogen (N) fertilization on plant biomass production under elevated CO2, we compared the response of N-fertilized tallgrass prairie at ambient and twice-ambient CO2 levels over a 2-year period. Native tallgrass prairie plots (4.5 m diameter) were exposed continuously (24 h) to ambient and twice-ambient CO2 from 1 April to 26 October. We compared our results to an unfertilized companion experiment on the same research site. Above- and belowground biomass production and leaf area of fertilized plots were greater with elevated than ambient CO2 in both years. The increase in biomass at high CO2 occurred mainly aboveground in 1991, a dry year, and belowground in 1990, a wet year. Nitrogen concentration was lower in plants exposed to elevated CO2, but total standing crop N was greater at high CO2. Increased root biomass under elevated CO2 apparently increased N uptake. The biomass production response to elevated CO2 was much greater on N-fertilized than unfertilized prairie, particularly in the dry year. We conclude that biomass production response to elevated CO2 was suppressed by N limitation in years with below-normal precipitation. Reduced N concentration in above- and belowground biomass could slow microbial degradation of soil organic matter and surface litter, thereby exacerbating N limitation in the long term.  相似文献   
130.
Nutrient distribution in a Swedish tree species experiment   总被引:2,自引:0,他引:2  
The influence of four tree species on the distribution of nutrients between different compartments of the ecosystem was examined. In a randomized block (n=3) experiment in south-western Sweden, Ca, Mg and K were determined as exchangeable amounts in the mineral soil and as total amounts in the O+A1 horizons (topsoil) and in the aboveground tree biomass. N contents were determined in all compartments as well as P contents of the aboveground tree biomass and the topsoil. The four tree species planted were: silver fir [Abies alba Mill.] (AA), grand fir [Abies grandis Lindl.] (AG), Norway spruce [Picea abies L. Karst.] (PA) and Japanese larch [Larix leptolepis (Sieb. och Zucc.) Endl.] (LL). At the age of 35–36 years, the total stemwood production of the most productive species, AG, was estimated at 471 m3 ha−1. In relation to AG, LL had produced 80%, PA 73% and AA 37%. The system totals [aboveground tree biomass total + topsoil total + exchangeable (Ca, Mg, K) or total (N) in the mineral soil] of Ca, K and N did not differ significantly at the 5% level between the investigated species. For Mg, the system total in LL was significantly higher than for the other species. There was an indication that LL and AA contained higher amounts of Ca, Mg, K and N in the topsoil but less in the biomass than did AG and PA (partly significant). In the mineral soil, there were no significant differences in the exchangeable pools of Ca and K, nor in the total amounts of N. The biomass nutrient concentrations generally decreased in the order: AA > PA > AG > LL. At stem or whole-tree harvest, the Ca export per biomass unit would more than double in the case of PA compared to LL. LL also contained less N in the biomass than the other species. However, the N content in the biomass did not differ between the most (AG) and the least (AA) productive species, although the production of dry weight biomass (standing + harvested) of AG had been twice that of AA. It is concluded that the nutrient budget of a managed forest may vary considerably depending on the choice of tree species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号