首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17117篇
  免费   2364篇
  国内免费   608篇
  2024年   75篇
  2023年   604篇
  2022年   497篇
  2021年   1399篇
  2020年   1368篇
  2019年   1961篇
  2018年   1284篇
  2017年   848篇
  2016年   761篇
  2015年   953篇
  2014年   1492篇
  2013年   1793篇
  2012年   776篇
  2011年   909篇
  2010年   497篇
  2009年   599篇
  2008年   544篇
  2007年   571篇
  2006年   530篇
  2005年   431篇
  2004年   347篇
  2003年   309篇
  2002年   255篇
  2001年   160篇
  2000年   137篇
  1999年   121篇
  1998年   130篇
  1997年   105篇
  1996年   75篇
  1995年   82篇
  1994年   67篇
  1993年   61篇
  1992年   60篇
  1991年   57篇
  1990年   30篇
  1989年   35篇
  1988年   31篇
  1987年   29篇
  1986年   13篇
  1985年   28篇
  1984年   21篇
  1983年   6篇
  1982年   7篇
  1981年   6篇
  1980年   7篇
  1979年   9篇
  1978年   3篇
  1976年   2篇
  1974年   1篇
  1970年   1篇
排序方式: 共有10000条查询结果,搜索用时 230 毫秒
71.
Several human cancer cells possess receptors for 1,25-dihydroxyvitamin D3[1,25-(OH)2D3]. In these cells 1,25-(OH)2D3 has a biphasic concentration-dependent regulatory effect on cell replication and specifically induces its own metabolism. We have studied the effects on these parameters of the native hormone together with those of two analogues fluorinated at the 24-carbon and of 1,24R,25-trihydroxyvitamin D3[1,24R,25-(OH)3D3]. The difluorinated analogue 24,24-difluoro-1,25-(OH)2D3[24,24-F2-1,25-(OH)2D3] is an approximately fivefold more potent inhibitor of cellular replication than the native hormone, while 1,24R,25-(OH)3D3 is about fivefold less potent. This enhanced potency of the fluorinated analogue parallels its enhanced potency in in vivo studies of its effects on calcium and mineral metabolism. However, although the analogue retains replication stimulatory activity, it is clearly no more potent than the native hormone in this activity: 1,24R,25-(OH)3D3 has no significant stimulatory activity. Exposure of the cells to 1,25-(OH)2D3 at 0.05 nM for 6 h increases the subsequent conversion of labelled hormone to aqueous phase soluble compounds by 6.7-fold. None of the other compounds had a similar effect at this concentration. At 10 nM all 1-hydroxylated compounds increased aqueous phase radioactivity about equally (13 to 17-fold); this effect is still specific since 25-OH D3 had no such effect even at 10 nM. Studies on the effects of the fluorinated analogues upon receptor binding of hormone in cell cytosols and uptake of hormone by intact cells clearly demonstrate that the enhanced activity of these analogues is not due to higher receptor affinity or more rapid access to intracellular receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
72.
Summary H1° histones were purified by preparative sodium dodecyl sulfate polyacrylamide gel electrophoresis from human lung carcinoma (line DMS79), human hepatoblastoma (HepG2), human adult lung and human adult and fetal liver. The purified human H1° histones were analyzed for their amino acid composition and terminal residues. The comparative analysis of the amino acid compositions of the different human H1° histones showed that: (a) all the H1° preparations have the characteristically high lysine content associated with a low arginine content, which distinguishes outer histones from core histones; (b) H1° is distinguishable from other H1 histones by the presence of methionine and histidine; (c) H1° histones from human adult, fetal and cancer cells are very similar in amino acid composition, and in cancer cells the level of the H1° histone is not inversely related with cell growth rate nor with the expression of the -fetoprotein gene.  相似文献   
73.
Summary We describe the in vitro influence of 3,5,3′-triiodo-l-thyronine (T3),l-thyroxine (T4), a thyroid-stimulating hormone (TSH), and/or estradiol (E2: chosen as the control of the methodology) on the cell kinetics (cell distribution in the S+G2+M phases) of mouse MXT and human MCF-7 mammary cancer cells. Experiments were performed by means of a cell image processor, analyzing MCF-7 or MXT cells that had been grown on glass cover slips and whose nuclei had been stained by the Feulgen reaction, which is selective and quantitative (stoichiometric) with respect to DNA. We show that T3, T4, and TSH at 0.01 μM dramatically stimulate the cell kinetics of the MXT mouse and the MCF-7 human mammary cancer cell lines. Indeed, the three hormones bring about a significant transient increase in the S+G2+M fraction as does E2. Furthermore, our data indicate that E2 and TSH are antagonistic with regards to MXT or MCF-7 cell kinetics. This work is supported by grants awarded by the IRSIA and the Fonds de la Recherche Scientifique Médicale (FRSM, Belgium).  相似文献   
74.
Metastasis is a major, life-threatening complication of cancer. The bloodstream is the most important disseminative route for cancer cells liberated from their parent tumors. Single circulating cancer cells are arrested in the microvasculature, where the vast majority are killed by rapid or slow processes, and the relatively few survivors grow into micrometastases. We review the underlying causes of one type of rapid cancer cell death in the microcirculation, namely, that caused by biomechanical interactions of cancer cells with microvessel walls, which may result in cell surface membrane expansion and lethal rupture. These lethal interactions appear to be important rate-regulators in hematogenous metastasis, and to dictate some aspects of metastatic patterns. Although these are not the only interactions involving cancer cells, in contrast to others involving cellular and humoral defense mechanisms, they have received comparatively little attention.  相似文献   
75.
Ras interaction with the GTPase-activating protein (GAP)   总被引:18,自引:0,他引:18  
Biologically active forms of Ras complexed to GTP can bind to the GTPase-activating protein (GAP), which has been implicated as possible target of Ras in mammalian cells. In order to study the structural features of Ras required for this interaction, we have evaluated a series of mutant ras proteins for the ability to bind GAP and a series of Ras peptides for the ability to interfere with this interaction. Point mutations in the putative effector region of Ras (residues 32-40) that inhibit biological activity also impair Ras binding to GAP. An apparent exception is the Thr to Ser substitution at residue 35; [Ser-35]Ras binds to GAP as effectively as wild-type Ras even though this mutant is biologically weak in both mammalian and S. cerevisiae cells. In vitro, [Ser-35]Ras can also efficiently stimulate the S. cerevisiae target of Ras, adenylyl cyclase, indicating that other factors may influence Ras/protein interactions in vivo. Peptides having Ras residues 17-44 and 17-32 competed with the binding of Ras to E. coli-expressed GAP with IC50 values of 2.4 and 0.9 microM, respectively, whereas Ras peptide 17-26 was without effect up to 400 microM. A related peptide from the yeast GTP-binding protein YPT1 analogous to Ras peptide 17-32 competed with an IC50 value of 19 microM even though the YPT1 protein itself is unable to bind to GAP. These results suggest that determinants within Ras peptide 17-32 may be important for Ras binding to GAP.  相似文献   
76.
Summary In the mammalian distal colon, the surface epithelium is responsible for electrolyte absorption, while the crypts are the site of secretion. This study examines the properties of electrical potential-driven86Rb+ fluxes through K+ channels in basolateral membrane vesicles of surface and crypt cells of the rabbit distal colon epithelium. We show that Ba2+-sensitive, Ca2+-activated K+ channels are present in both surface and crypt cell derived vesicles with half-maximal activation at 5×10–7 m free Ca2+. This suggests an important role of cytoplasmic Ca2+ in the regulation of the bidirectional ion fluxes in the colon epithelium.The properties of K+ channels in the surface cell membrane fraction differ from those of the channels in the crypt cell derived membranes. The peptide toxin apamin inhibits Ca2+-activated K+ channels exclusively in surface cell vesicles, while charybdotoxin inhibits predominantely in the crypt cell membrane fraction. Titrations with H+ and tetraethylammonium show that both high-and low-sensitive86Rb+ flux components are present in surface cell vesicles, while the high-sensitive component is absent in the crypt cell membrane fraction. The Ba2+-sensitive, Ca2+-activated K+ channels can be solubilized in CHAPS and reconstituted into phospholipid vesicles. This is an essential step for further characterization of channel properties and for identification of the channel proteins in purification procedures.  相似文献   
77.
Summary Regulation of the paracellular pathway in rabbit distal colon by the hormone aldosterone was investigated in vitro in Ussing chambers by means of transepithelial and microelectrode techniques. To evaluate the cellular and paracellular resistances an equivalent circuit analysis was used. For the analysis the apical membrane resistance was altered using the antibiotic nystatin. Under control conditions two groups of epithelia were found, each clearly dependent on the light: dark regime. Low-transporting epithelia (LT) were observed in the morning and high-transporting epithelia (HT) in the afternoon. Na+ transport was about 3-fold higher in HT than in LT epithelia. Incubating epithelia of both groups with 0.1 mol·1-1 aldosterone on the serosal side nearly doubled in LT epithelia the short circuit current and transepithelial voltage but the transepithelial resistance was not influenced. Maximal values were reached after 4–5 h of aldosterone treatment. In HT epithelia due to the effect of aldosterone all three transepithelial parameters remained constant over time. Evaluation of the paracellular resistance revealed a significant increase after aldosterone stimulation in both epithelial groups. This increase suggests that tight junctions might have been regulated by aldosterone. The hormonal effect on electrolyte transport was also dependent on the physiological state of the rabbit colon. Since net Na+ absorption in distal colon is, in addition to transcellular absorption capacity, also dependent on the permeability of the paracellular pathway, the regulation of tight junctions by aldosterone may be a potent mechanism for improving Na+ absorption during hormone-stimulated ion transport.Abbreviations V t transepithelial potential difference (mV) - R t transepithelial resistance (·cm2) - G t transepithelial conductance (mS·cm-2) - Isc calculated short circuit current (A·cm-2) - V a apical membrane potential difference (mV) - V bl basolateral membrane potential difference (mV) - voltage divider ratio - R a apical membrane resistance (·cm2) - R bl basolateral membrane resistance (·cm2) - R c cellular resistance ( of apical and basolateral resistance) (·cm2) - R p resistance of the paracellular pathway (·cm2) - G a apical membrane conductance (mS·cm-2) - G bl basolateral membrane conductance (mS·cm-2) - G p paracellular conductance (mS·cm-2) - G t transepithelial conductance (mS·cm-2) - HT contr high transporting control epithelia - LT contr low transporting control epithelia - HT aldo aldosterone incubated high transporting epithelia - LT aldo aldosterone incubated low transporting epithelia  相似文献   
78.
Summary Normal human colon mucosa cells and cells obtained from histologically normal tissues near that cancer were fused with human colon cancer cells. Resultant hybrid populations of normal and malignant cell fusions behaved as nonmalignant cells in culture, were unable to grow in soft agar, did not express tumor-associated antigens, and were nontumorigenic in nude mice. Autofusion of the cancer cell population led to a phenotype intermediate between normal and malignant cells. That is, the cultures had a much lower plating efficiency in soft agar, and the tumors had a longer latency and slower growth rate in nude mice. This is the first cell culture system to demonstrate that normal epithelial cells can suppress malignancy of their autologous cancer cells, and is a prelude to more extensive studies of genetic events involved in malignant conversion of human colonic epithelium. This study was supported by The University of Texas Health Science Center at San Antonio Center for Human Cell Biotechnology and a graduate student stipend (T. J.) from the Department of Cellular and Structural Biology.  相似文献   
79.
The Ca2+-activated maxi K+ channel is predominant in the basolateral membrane of the surface cells in the distal colon. It may play a role in the regulation of the aldosterone-stimulated Na+ reabsorption from the intestinal lumen. Previous measurements of these basolateral K+ channels in planar lipid bilayers and in plasma membrane vesicles have shown a very high sensitivity to Ca2+ with a K 0.5 ranging from 20 nm to 300 nm, whereas other studies have a much lower sensitivity to Ca2+. To investigate whether this difference could be due to modulation by second messenger systems, the effect of phosphorylation and dephosphorylation was examined. After addition of phosphatase, the K+ channels lost their high sensitivity to Ca2+, yet they could still be activated by high concentrations of Ca2+ (10 μm). Furthermore, the high sensitivity to Ca2+ could be restored after phosphorylation catalyzed by a cAMP dependent protein kinase. There was no effect of addition of protein kinase C. In agreement with the involvement of enzymatic processes, lag periods of 30–120 sec for dephosphorylation and of 10–280 sec for phosphorylation were observed. The phosphorylation state of the channel did not influence the single channel conductance. The results demonstrate that the high sensitivity to Ca2+ of the maxi K+ channel from rabbit distal colon is a property of the phosphorylated form of the channel protein, and that the difference in Ca2+ sensitivity between the dephosphorylated and phosphorylated forms of the channel protein is more than one order of magnitude. The variety in Ca2+ sensitivities for maxi K+ channels from tissue to tissue and from different studies on the same tissue could be due to modification by second messenger systems. Received: 28 February 1995/Revised: 22 December 1995  相似文献   
80.
 In the present study, we carried out a functional analysis of regional lymph node lymphocytes (RLNL) from patients with lung cancer after in vitro activation by interleukin-2 (IL-2) and interleukin-12 (IL-12). IL-12 (100 U/ml) enhanced both the proliferation and cytotoxic activity of RLNL in a culture with low doses of IL-2 (5 – 10 JRU/ml). After comparing an RLNL culture with a low dose of IL-2 alone, a higher proportion of CD8+ cells and CD56+ cells and a lower proportion of CD4+ cells were found in the culture with both IL-12 and a low dose of IL-2. Such a combination of the cytokines effectively activated RLNL in terms of the expression of IL-2 receptors. In the culture condition of IL-12 and a low dose of IL-2, a synergistic effect was observed in the production of such cytokines as interferon γ, tumor necrosis factor α (TNFα), and TNFβ, as well as in tumor cytotoxicity. However, the addition of IL-12 inhibited the cytotoxicity of RLNL in the culture with a high dose of IL-2 (100 JRU/ml). This inhibition is considered to be partially due to the endogenous production of TNFα by lymphocytes, because the neutralization of TNFα bioactivity partially restored the cytotoxic activities of RLNL. Furthermore, in the presence of hydrocortisone, IL-12 synergistically enhanced the cytotoxic activity of RLNL cultured with a high dose of IL-2. These results provide useful information about the improvement of adoptive immunotherapy against cancer using RLNL. Received: 2 February 1996 / Accepted: 30 July 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号