首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   0篇
  2022年   5篇
  2021年   1篇
  2020年   5篇
  2019年   5篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   11篇
  2014年   22篇
  2013年   19篇
  2012年   11篇
  2011年   8篇
  2010年   11篇
  2009年   6篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2003年   2篇
  1985年   1篇
排序方式: 共有124条查询结果,搜索用时 156 毫秒
81.
Ten years after the initial generation of induced pluripotent stem cells(hiPSCs)from human tissues, their potential is no longer questioned, with over 15000 publications listed on PubMed, covering various fields of research; including disease modeling, cell therapy strategies, pharmacology/toxicology screening and 3 D organoid systems. However, despite evidences that the presence of mutations in hiPSCs should be a concern, publications addressing genomic integrity of these cells represent less than 1% of the literature. After a first overview of the mutation types currently reported in hiPSCs, including karyotype abnormalities, copy number variations, single point mutation as well as uniparental disomy, this review will discuss the impact of reprogramming parameters such as starting cell type and reprogramming method on the maintenance of the cellular genomic integrity. Then, a specific focus will be placed on culture conditions and subsequent differentiation protocols and how their may also trigger genomic aberrations within the cell population of interest.Finally, in a last section, the impact of genomic alterations on the possible usages of hiPSCs and their derivatives will also be exemplified and discussed. We will also discuss which techniques or combination of techniques should be used to screen for genomic abnormalities with a particular focus on the necessary quality controls and the potential alternatives.  相似文献   
82.
83.
诱导多能干细胞(induced pluripotent stem cells, iPSCs)是类似胚胎干细胞的一种细胞类型,可以通过对已分化的体细胞进行诱导重编程获得,具有自我更新能力和多潜能性,在体外疾病模型的建立、移植替代治疗、发育学等方面有广阔的应用前景,但致瘤性、转化率低、疾病模型拟合度差等缺点限制着iPS技术在临床和科研上的推广。对近几年诱导多能干细胞技术优化方面取得的新进展进行综述,重点阐述降低致瘤性和提高转化率的几种方法及iPS在临床和科研上的应用前景。  相似文献   
84.
Induced pluripotent stem(i PS) cells, somatic cells reprogrammed to the pluripotent state by forced expression of defined factors, represent a uniquely valuable resource for research and regenerative medicine. However, this methodology remains inefficient due to incomplete mechanistic understanding of the reprogramming process. In recent years, various groups have endeavoured to interrogate the cell signalling that governs the reprogramming process, including LIF/STAT3, BMP, PI3 K, FGF2, Wnt, TGFβ and MAPK pathways, with the aim of increasing our understanding and identifying new mechanisms of improving safety, reproducibility and efficiency. This has led to a unified model of reprogramming that consists of 3 stages: initiation, maturation and stabilisation. Initiation of reprogramming occurs in almost all cells that receive the reprogramming transgenes; most commonly Oct4, Sox2, Klf4 and c Myc, and involves a phenotypic mesenchymal-to-epithelial transition. The initiation stage is also characterised by increased proliferation and a metabolic switch from oxidative phosphorylation to glycolysis. The maturation stage is considered the major bottleneck within the process, resulting in very few "stabilisation competent" cells progressing to the final stabilisation phase. To reach this stage in both mouse and human cells, pre-i PS cells must activate endogenous expression of the core circuitry of pluripotency, comprising Oct4, Sox2, and Nanog, and thus reach a state of transgene independence. By the stabilisation stage, i PS cells generally use the same signalling networks that govern pluripotency in embryonic stem cells. These pathways differ between mouse and human cells although recent work has demonstrated that this is context dependent. As i PS cell generation technologies move forward, tools are being developed to interrogate the process in more detail, thus allowing a greater understanding of this intriguing biological phenomenon.  相似文献   
85.
In this short review, we have presented a brief overview on major web resources relevant to stem cell research. To facilitate more efficient use of these resources, we have provided a preliminary rating based on our own user experience of the overall quality for each resource. We plan to update the information on an annual basis.  相似文献   
86.
87.
88.
《Cell reports》2020,30(5):1515-1529.e4
  1. Download : Download high-res image (190KB)
  2. Download : Download full-size image
  相似文献   
89.
The global prevalence of weight loss is increasing, especially in young women. However, the extent and mechanisms by which maternal weight loss affects the offspring is still poorly understood. Here, using an enriched environment (EE)-induced weight loss model, we show that maternal weight loss improves general health and reprograms metabolic gene expression in mouse offspring, and the epigenetic alterations can be inherited for at least two generations. EE in mothers induced weight loss and its associated physiological and metabolic changes such as decreased adiposity and improved glucose tolerance and insulin sensitivity. Relative to controls, their offspring exhibited improved general health such as reduced fat accumulation, decreased plasma and hepatic lipid levels, and improved glucose tolerance and insulin sensitivity. Maternal weight loss altered gene expression patterns in the liver of offspring with coherent down-regulation of genes involved in lipid and cholesterol biosynthesis. Epigenomic profiling of offspring livers revealed numerous changes in cytosine methylation depending on maternal weight loss, including reproducible changes in promoter methylation over several key lipid biosynthesis genes, correlated with their expression patterns. Embryo transfer studies indicated that oocyte alteration in response to maternal metabolic conditions is a strong factor in determining metabolic and epigenetic changes in offspring. Several important lipid metabolism-related genes have been identified to partially inherit methylated alleles from oocytes. Our study reveals a molecular and mechanistic basis of how maternal lifestyle modification affects metabolic changes in the offspring.  相似文献   
90.
The long-awaited second edition of the International Symposium on "Epigenome Network, Development and Reprogramming of Germ Cells" hosted by Hiroyuki Sasaki took place at the Kyushu University School of Medicine, in Fukuoka, Japan from 22 to 24 November 2010. This meeting brought together again the crème de la crème of the Japanese research community investigating germline development, reprogramming and genetic networks as well as eminent international scientists. Novel trend concepts including the "reprogramming expressway", "canalization", "licensing", "epigenetic barrier", "flex points" and "hydroxymethylation" were introduced and discussed in the context of development, reprogramming and pluripotency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号