首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   0篇
  2022年   5篇
  2021年   1篇
  2020年   5篇
  2019年   5篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   11篇
  2014年   22篇
  2013年   19篇
  2012年   11篇
  2011年   8篇
  2010年   11篇
  2009年   6篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2003年   2篇
  1985年   1篇
排序方式: 共有124条查询结果,搜索用时 114 毫秒
31.
32.
MiR-302 has been shown to regulate pluripotency genes and help somatic cell reprogramming. Thus, promotion of endogenous miR-302 expression could be a desirable way to facilitate cell reprogramming. By using a luciferase reporter system of the miR-302 promoter, we screened and found that an anti-allergy drug, tranilast, could significantly promote miR-302 expression. Further experiments revealed that two aryl hydrocarbon receptor (AhR) binding motifs on the miR-302 promoter are critical and that activation of AhR is required for tranilast-induced miR-302 expression. Consistently, not only tranilast but other AhR agonists promoted miR-302 expression. Furthermore, the activation of AhR facilitated cell reprogramming in a miR-302-dependent way. These results elucidate that miR-302 expression can be regulated by AhR and thus provide a strategy for promoting somatic cell reprogramming by AhR ligands.  相似文献   
33.

Background

The diversity of cell types and tissue types that originate throughout development derives from the differentiation potential of embryonic stem cells and somatic stem cells. While the former are pluripotent, and thus can give rise to a full differentiation spectrum, the latter have limited differentiation potential but drive tissue remodeling. Additionally cancer tissues also have a small population of self-renewing cells with stem cell properties. These cancer stem cells may arise through dedifferentiation from non-stem cells in cancer tissues, illustrating their plasticity, and may greatly contribute to the resistance of cancers to chemotherapies.

Scope of review

The capacity of the different types of stem cells for self-renewal, the establishment and maintenance of their differentiation potential, and the selection of differentiation programs are greatly defined by the interplay of signaling molecules provided by both the stem cells themselves, and their microenvironment, the niche. Here we discuss common and divergent roles of TGF-β family signaling in the regulation of embryonic, reprogrammed pluripotent, somatic, and cancer stem cells.

Major conclusions

Increasing evidence highlights the similarities between responses of normal and cancer stem cells to signaling molecules, provided or activated by their microenvironment. While TGF-β family signaling regulates stemness of normal and cancer stem cells, its effects are diverse and depend on the cell types and physiological state of the cells.

General significance

Further mechanistic studies will provide a better understanding of the roles of TGF-β family signaling in the regulation of stem cells. These basic studies may lead to the development of a new therapeutic or prognostic strategies for the treatment of cancers. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   
34.
Human umbilical cord mesenchymal stem cells (hUMSC) are primitive multipotent cells capable of differentiating into cells of different lineages. They can be an alternative source of pluripotent cells since they are ethically and regulatory approved, are easily obtained and have low immunogenicity compared to embryonic stem cells which are dogged with numerous controversies. hUMSC can be a great source for cell and transplantation therapy.  相似文献   
35.
Monogenic diseases are often severe, life-threatening disorders for which lifelong palliative treatment is the only option. Over the last two decades, a number of strategies have been devised with the aim to treat these diseases with a genetic approach. Gene therapy has been under development for many years, yet suffers from the lack of an effective and safe vector for the delivery of genetic material into cells. More recently, gene targeting by homologous recombination has been proposed as a safer treatment, by specifically correcting disease-causing mutations. However, low efficiency is a major drawback. The emergence of two technologies could overcome some of these obstacles. Terminally differentiated somatic cells can be reprogrammed, using defined factors, to become induced pluripotent stem cells (iPSCs), which can undergo efficient gene mutation correction with the aid of fusion proteins known as zinc finger nucleases (ZFNs). The amalgamation of these two technologies has the potential to break through the current bottleneck in gene therapy and gene targeting.  相似文献   
36.
37.
38.
39.
Trichostatin A (TSA), a histone deacetylase inhibitor, has been used to improve nuclear reprogramming in somatic cell nuclear transfer embryos. However, the molecular mechanism of TSA for the improvement of the pre- and postimplantation embryonic development is unknown. In the present study, we investigated mechanism of cell cycle arrest caused by TSA and also determined embryo quality and gene expression in cloned bovine embryos produced from TSA-treated donor cells compared with embryos produced by in vitro fertilization or parthenogenetic activation. We observed that, 50 nM TSA-treated cells were synchronized at G0/G1 stage with concomitant decrease in the proportion of these cells in the S stage of the cell cycle, which was also supported by significant changes in cell morphology and decreased proliferation (P < 0.05). Measurement of relative expression using real-time polymerase chain reaction of a some cell cycle–related genes and microRNAs in treated donor cells showed decreased expression of HDAC1, DNMT1, P53, CYC E1, and CDK4 and increased expression of DNMT3a, CDKN1A, CDK2, CDK3, miR-15a, miR-16, and miR-34a (P < 0.05). No change in the relative expression of miR-449a was noticed. Trichostatin A treatment of donor cells significantly improved both cleavage and blastocyst rate (P < 0.05) compared with the control embryos, also apoptotic index in treated cloned blastocysts was significantly decreased compared with the nontreated blastocysts (P < 0.05) and was at the level of IVF counterpart. Relative expression of HDAC1 and DNMT3a was significantly lower in treated cloned and parthenogenetic embryos than that of nontreated and IVF counterpart, whereas in case of P53, expression level between treated and IVF embryos was similar, which was significantly lower than nontreated cloned and parthenogenetic embryos. In conclusion, our data suggested that TSA improves yield and quality of cloned bovine embryos by modulating the expression of G0/G1 cell cycle stage–related microRNA in donor cells, which support that TSA might be great cell cycle synchronizer apart from potent epigenetic modulator in cloning research in future.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号