首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1141篇
  免费   6篇
  国内免费   4篇
  2023年   2篇
  2022年   10篇
  2021年   7篇
  2020年   10篇
  2019年   14篇
  2018年   28篇
  2017年   10篇
  2016年   15篇
  2015年   50篇
  2014年   98篇
  2013年   108篇
  2012年   46篇
  2011年   71篇
  2010年   64篇
  2009年   76篇
  2008年   60篇
  2007年   64篇
  2006年   59篇
  2005年   48篇
  2004年   52篇
  2003年   40篇
  2002年   22篇
  2001年   11篇
  2000年   11篇
  1999年   13篇
  1998年   13篇
  1997年   12篇
  1996年   13篇
  1995年   9篇
  1994年   10篇
  1993年   5篇
  1992年   5篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   4篇
  1984年   14篇
  1983年   15篇
  1982年   18篇
  1981年   11篇
  1980年   5篇
  1979年   7篇
排序方式: 共有1151条查询结果,搜索用时 15 毫秒
61.
Serum albumin is a mixture of mercaptalbumin (reduced form) and non-mercaptalbumin (oxidized form), i.e. a protein redox couple in serum. To investigate dynamic changes in the redox state of rat serum albumin (RSA), we developed a simple and sensitive high-performance liquid chromatographic (HPLC) system using an ion-exchange column with a linear gradient of ethanol concentration. Furthermore, we applied this HPLC system to examine dynamic changes in the redox state of RSA caused by severe oxidative stress such as exhaustive physical exercise. Using this system, we successfully separated RSA to rat mercaptalbumin (MA(r)) and rat non-mercaptalbumin (NA(r)), and also found the best conditions for the clear separation of RSA. In the experiments with exhaustive exercise, mean values for the MA(r) fraction in control and exercise groups were 76.2+/-1.8 and 69.0+/-3.5%, respectively. The MA(r) in the exercise group was significantly oxidized compared with that of the control group (P<0.01). These results suggested that RSA might act as one of the major scavengers in extracellular fluids under severe oxidative stress.  相似文献   
62.
1,4-Benzoquinone, coenzyme Q 0 and Q 10 were reacted with a series of hydrogen donors in the ESR cavity in the presence or absence of UVA irradiation. The signals of the radicals generated from the hydrogen donors or of those of the semiquinones were detected. The reaction mechanism was interpreted by a hydrogen atom transfer instead of the usual electron transfer mechanism on the basis of the redox potentials of the reactants and the Marcus theory. The hydrogen atom transfer is explained by the excited triplet state of quinones, which, on the basis of quantum mechanic calculations, may be reached even under visible light. In some cases, hydrogen atom transfer was also observed without irradiation, although to a lesser extent.  相似文献   
63.
Calcineurin (CN) is a protein phosphatase involved in a wide range of cellular responses to calcium-mobilizing signals, and a role for this enzyme in neuropathology has been postulated. We have investigated the possibility that redox modulation of CN activity is relevant to neuropathological conditions where an imbalance in reactive oxygen species has been described. We have monitored CN activity in cultured human neuroblastoma SH-SY5Y cells and obtained evidence that CN activity is promoted by treatment with ascorbate or dithiothreitol and impaired by oxidative stress. Evidence for the existence of a redox regulation of this enzyme has been also obtained by overexpression of wild-type antioxidant Cu,Zn superoxide dismutase (SOD1) that promotes CN activity and protects it from oxidative inactivation. On the contrary, overexpression of mutant SOD1s associated with familial amyotrophic lateral sclerosis (FALS) impairs CN activity both in transfected human neuroblastoma cell lines and in the motor cortex of brain from FALS-transgenic mice. These data suggest that CN might be a target in the pathogenesis of SOD1-linked FALS.  相似文献   
64.
We are addressing the puzzling metal ion specificity of Fe- and Mn-containing superoxide dismutases (SODs) [see C.K.Vance, A.-F. Miller, J. Am. Chem. Soc. 120(3) (1998) 461–467]. Here, we test the significance to activity and active site integrity of the Gln side chain at the center of the active site hydrogen bond network. We have generated a mutant of MnSOD with the active site Gln in the location characteristic of Fe-specific SODs. The active site is similar to that of MnSOD when Mn2+, Fe3+ or Fe2+ are bound, based on EPR and NMR spectroscopy. However, the mutant’s Fe-supported activity is at least 7% that of FeSOD, in contrast to Fe(Mn)SOD, which has 0% of FeSOD’s activity. Thus, moving the active site Gln converts Mn-specific SOD into a cambialistic SOD and the Gln proves to be important but not the sole determinant of metal-ion specificity. Indeed, subtle differences in the spectra of Mn2+, Fe3+ and 1H in the presence of Fe2+ distinguish the G77Q, Q146A mut-(Mn)SOD from WT (Mn)SOD, and may prove to be correlated with metal ion activity. We have directly observed the side chain of the active site Gln in Fe2+SOD and Fe2+(Mn)SOD by 15N NMR. The very different chemical shifts indicate that the active site Gln interacts differently with Fe2+ in the two proteins. Since a shorter distance from Gln to Fe and stronger interaction with Fe correlate with a lower Em in Fe(Mn)SOD, Gln has the effect of destabilizing additional electron density on the metal ion. It may do this by stabilizing OH coordinated to the metal ion.  相似文献   
65.
Lithiation of [p-But-calix[4]-(OMe)2(OH)2] (1), followed by reaction with TiCl3(thf)3 or TiCl4(thf)2, led to the corresponding titanium-calix[4]arene complexes [p-But-calix[4]-(OMe)2(O)2]TiCl] (2) and [p-But-calix[4]-(OMe)2(O)2]TiCl2] (3), respectively. Reaction of 1 with TiCl4(thf)2 results in demethylation of the calix[4]arene and the obtention of [p-But-calix[4]-(OMe)2(O)3]TiCl] (4), whose hydrolysis led to [p-But-calix[4]-(OMe)(OH)3] (6). The preparation of 6 can be carried out as a one-pot synthesis. Both 2 and 4 undergo alkylation reactions using conventional procedures, thus forming surprisingly stable organometallic species, namely [p-But-calix[4]-(OMe)2(O)2Ti(R)] (R = Me (7); CH2Ph (8), p-MeC6H4 (9) and [p-But-calix[4]-(OMe)(O)3Ti(R)] (R = Me (10); CH2Ph (11); p-MeC6H4 (12)). Complexes 7 and 9 undergo a thermal oxidative conversion into 10 and 12, occurring with the demethylation of one of the methoxy groups. A solid state structural property of 9 and 12 has been revealed by X-ray analysis showing a self-assembly of the monomeric units into a columnar polymer, where the p-tolyl substituent at the metal functions as a guest group for an adjacent titanium-calixarene. Reductive alkylation of 3 with Mg(CH2Ph)2 gave 8 instead of forming the corresponding dialkyl derivative. Two synthetic routes have been devised for the synthesis of the Ti(III)-Ti(III) dimer [p-But-calix[4]-(OMe)(O)3Ti]2] (13): the reduction of 4 and the reaction of TiCl3(thf)3 with the lithiated form of 6. A very strong antiferromagnetic coupling is responsible for the peculiar magnetic behavior of 13. The proposed structures have been supported by the X-ray analyses of 4, 9, 12 and 13.  相似文献   
66.
The mature, functional sieve-tube system in higher plants is dependent upon protein import from the companion cells to maintain a functional long-distance transport system. Soluble proteins present within the sieve-tube lumen were investigated by analysis of sieve-tube exudates which revealed the presence of distinct sets of polypeptides in seven monocotyledonous and dicotyledonous plant species. Antibodies directed against sieve-tube exudate proteins from Ricinus communis L. demonstrated the presence of shared antigens in the phloem sap collected from Triticum aestivum L., Oryza sativa L., Yucca filamentosa L., Cucurbita maxima Duch., Robinia pseudoacacia L. and Tilia platyphyllos L. Specific antibodies were employed to identify major polypeptides. Molecular chaperones related to Rubisco-subunit-binding protein and cyclophilin, as well as ubiquitin and the redox proteins, thioredoxin h and glutaredoxin, were detected in the sieve-tube exudate of all species examined. Actin and profilin, a modulator of actin polymerization, were also present in all analyzed phloem exudates. However, some proteins were highly species-specific, e.g. cystatin, a protease-inhibitor was present in R. communis but was not detected in exudates from other species, and orthologs of the well-known squash phloem lectin, phloem protein 2, were only identified in the sieve-tube exudate of R. communis and R. pseudoacacia. These findings are discussed in terms of the likely roles played by phloem proteins in the maintenance and function of the enucleate sieve-tube system of higher plants. Received: 12 February 1998 / Accepted: 16 March 1998  相似文献   
67.
W. Schmidt  M. Bartels 《Protoplasma》1998,203(3-4):186-193
Summary Plasma membrane vesicles isolated from roots ofPlantago lanceolata L. revealed approximately 70% right-side-out orientation based on structure-linked latency with H+-ATPase as a marker. Incubation with 0.05% Brij 58 caused the formation of sealed insideout vesicles, evidenced by assaying ATP-dependent proton pumping activity with the optical pH probe acridine orange. NADH-linked FeEDTA reductase activity was stimulated by including either Triton X-100 or Brij 58 in the assay medium. The activity of inverted (Brijtreated) vesicles was not further increased by the addition of Triton, suggesting that maximum activity was obtained in inside-out vesicles. Iron deficiency resulted in a ca. 2-fold increase in the specific activity of both ATPase and Fe(III) chelate reductase but did not cause significant alterations with respect to the effect of detergents. It is concluded that in vitro both donor and acceptor sites of NADH-FeEDTA reductase are located on the cytosolic face of the membrane and trans-oriented flow of electrons is not detectable in plasma membrane vesicles. Unlike Fe chelate reduction in vivo, the plasma membrane-bound reductase activity was insensitive towards application of the translation inhibitor cycloheximide prior to isolation of the membranes, implying the involvement of a regulatory enzyme in the electron transport in vivo.Abbreviations BPDS bathophenanthroline disulfonate - BTP 1,3-bis[tris(hydroxymethyl)methylamino]-propane - PM plasma membrane  相似文献   
68.
69.
The field of redox proteomics focuses to a large extent on analyzing cysteine oxidation in proteins under different experimental conditions and states of diseases. The identification and localization of oxidized cysteines within the cellular milieu is critical for understanding the redox regulation of proteins under physiological and pathophysiological conditions, and it will in turn provide important information that are potentially useful for the development of novel strategies in the treatment and prevention of diseases associated with oxidative stress. Antioxidant enzymes that catalyze oxidation/reduction processes are able to serve as redox biomarkers in various human diseases, and they are key regulators controlling the redox state of functional proteins. Redox regulators with antioxidant properties related to active mediators, cellular organelles, and the surrounding environments are all connected within a network and are involved in diseases related to redox imbalance including cancer, ischemia/reperfusion injury, neurodegenerative diseases, as well as normal aging. In this review, we will briefly look at the selected aspects of oxidative thiol modification in antioxidant enzymes and thiol oxidation in proteins affected by redox control of antioxidant enzymes and their relation to disease. [BMB Reports 2015; 48(4): 200-208]  相似文献   
70.
Thioredoxin (Trx) is a protein disulfide reductase that, together with nicotinamide adenine dinucleotide phosphate (NADPH) and thioredoxin reductase (TrxR), controls oxidative stress or redox signaling via thiol redox control. Human cytosolic Trx1 has Cys32 and Cys35 as the active site and three additional cysteine residues (Cys62, Cys69, and Cys73), which by oxidation generates inactive Cys62 to Cys69 two-disulfide Trx. This, combined with TrxR with a broad substrate specificity, complicates assays of mammalian Trx and TrxR. We sought to understand the autoregulation of Trx and TrxR and to generate new methods for quantification of Trx and TrxR. We optimized the synthesis of two fluorescent substrates, di-eosin–glutathione disulfide (Di-E–GSSG) and fluorescein isothiocyanate-labeled insulin (FiTC–insulin), which displayed higher fluorescence on disulfide reduction. Di-E–GSSG showed a very large increase in fluorescence quantum yield but had a relatively low affinity for Trx and was also a weak direct substrate for TrxR, in contrast to GSSG. FiTC–insulin was used to develop highly sensitive assays for TrxR and Trx. Reproducible conditions were developed for reactivation of modified Trx, commonly present in frozen or oxidized samples. Trx in cell extracts and tissue samples, including plasma and serum, were subsequently analyzed, showing highly reproducible results and allowing measurement of trace amounts of Trx.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号