首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12436篇
  免费   541篇
  国内免费   201篇
  2023年   128篇
  2022年   114篇
  2021年   200篇
  2020年   181篇
  2019年   275篇
  2018年   207篇
  2017年   181篇
  2016年   215篇
  2015年   233篇
  2014年   389篇
  2013年   535篇
  2012年   346篇
  2011年   327篇
  2010年   322篇
  2009年   403篇
  2008年   492篇
  2007年   501篇
  2006年   462篇
  2005年   356篇
  2004年   394篇
  2003年   322篇
  2002年   344篇
  2001年   271篇
  2000年   263篇
  1999年   237篇
  1998年   223篇
  1997年   216篇
  1996年   185篇
  1995年   244篇
  1994年   288篇
  1993年   262篇
  1992年   287篇
  1991年   258篇
  1990年   272篇
  1989年   273篇
  1988年   291篇
  1987年   259篇
  1986年   241篇
  1985年   307篇
  1984年   341篇
  1983年   279篇
  1982年   322篇
  1981年   235篇
  1980年   191篇
  1979年   136篇
  1978年   73篇
  1977年   63篇
  1976年   62篇
  1972年   50篇
  1971年   32篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
Summary The meninges of albino Wistar rat embryos, aged between the 11th embryonic day (ED) and birth, were sectioned using a specially constructed device. This technique permits optimal microanatomical preservation of all tissues covering the convexity of the brain: skin, muscle, cartilage or bone, and the meninges. At ED11, the zone situated between the epidermis and the brain is occupied by a mesenchymal network. At ED12, part of this delicate network develops as a dense outer cellular layer, while the remainder retains its reticular appearance, thus forming an inner layer (the future meningeal tissue). At ED13, the dura mater starts to differentiate. At ED14, the bony anlage of the skull can be identified, and along with the proceeding maturation of dura mater some fibrillar structures resembling skeletal muscle fibers appear in the developing arachnoid space. At ED15–17, a primitive interface zone — dura mater/ arachnoid — is formed, comprised by an outer electronlucent and an inner electron-dense layer marking the outer aspect of the arachnoidal space. At ED18–19, the innermost cellular row of the inner durai layer transforms into neurothelium, which is separated from the darker arachnoidal cells by an electron-dense band. The arachnoidal trabecular zone with the leptomeningeal cells is formed at ED19. By the end of the prenatal period (ED20–21), its innermost part organizes into an inner arachnoidal layer and an outer and inner pial layer. The results from this study indicate (i) that dura mater and leptomeninges develop from an embryonic network of connective tissue-forming cells, and (ii) that the formation of cerebrospinal fluid (CSF)-containing spaces accompanies the differentiation of the meningeal cellular layers.  相似文献   
92.
Summary In male rats a large number of the postganglionic neurons which innervate the pelvic organs are located in the major pelvic ganglion. In the present study we have identified the location within this ganglion of neurons which project to either of three pelvic organs, the penis, colon or urinary bladder. Two fluorescent retrogradely-transported dyes, Fast Blue and Fluoro-Gold, were used. For most animals one dye was injected into the cavernous space of the penis, the wall of the distal colon or the wall of the urinary bladder. In a small number of animals two organs were injected, each with a different dye. One to six weeks after injection the major pelvic ganglia were fixed in buffered formaldehyde. The distribution of fluorescent dye-labelled cells was observed in whole mounts of complete ganglia and, in most cases, also in small accessory ganglia located between the ureter and the prostate. The studies showed a unique pattern of distribution for each organ-specific group of neurons. Most of the colon neurons are located in the major pelvic ganglion near the entrance of the pelvic nerve, whereas almost all of the penis neurons are near or within the penile nerve. Bladder neurons are relatively evenly distributed throughout the ganglion. These results demonstrate a distinct topographical organization of organ-specific neurons of the major pelvic ganglion of the male rat, a phenomenon which has also been observed in other peripheral ganglia.  相似文献   
93.
Summary In an attempt to reveal the role of antigen-laden marginal metallophil (MM) and other macrophages in the intrasplenic immune response of a specific B-cell lineage to a thymus-independent type-2 antigen (Ficoll conjugated with fluorescein isothiocyanate), simultaneous immuno-histological observations of the involved cells were performed in the rat. By newly established methods of double or triple immunostainings, time-kinetics of the following parameters were studied and compared: (1) the antigen, (2) the specific antibody-forming cells (AFC) directed to the fluorescein-isothiocyanate determinant, (3) proliferating cells labeled with 5-bromo-2-deoxyuridine (BrdU), and (4) macrophage subpopulations recognized by monoclonal antibodies (ED2 and ED3). The antigen localized stably not only in the marginal-zone macrophages but also in the MM except around the follicular area. The increase of BrdU-positive cells was observed from day 2 up to day 4 after antigen injection mostly in the periphery of the periarterial lymphoid sheath (outer PALS), which indicated antigen-induced proliferation. As a novel finding, the majority of AFC, both BrdU-positive and -negative, were either closely associated with the antigen-laden MM, or forming cell clusters with ED2-positive macrophages in the outer PALS. In contrast, there were very few AFC in juxtaposition to antigen-free MM in the follicular area or the antigen-laden marginal zone macrophages. The results led to the proposal of a hypothesis that the antigen-laden MM together with ED2-positive macrophages constitute an immunoproliferative microenvironment for the plasmacellular reaction by accumulating the antigen-specific B-cell lineage and promoting these cells to differentiate into the AFC and to proliferate in the outer PALS.Abbreviations AFC specific antibody-forming cells - BrdU 5-bromo-2-deoxyuridine - Fic-F FITC-conjugated Ficoll - FITC fluorescein isothiocyanate - HRP horseradish peroxidase - MM marginal metallophils - MZ marginal zone - PALS periarterial lymphoid sheath - PBS phosphate-buffered saline - TI2 thymus-independent type-2  相似文献   
94.
Summary The presence of human blood-group antigens was analyzed in the rat cochlea during its postnatal development, using anti-A, anti-B and anti-H antibodies. At no stage was reactivity with anti-A antibody observed. With the anti-H antibody, a strong reactivity was observed from 1 to 9 days after birth within hair cells and some other surface epithelial cells of the cochlear duct. After postnatal day 9, only a faint reactivity persisted in a few non-sensory cells. With the anti-B antibody, only hair cells were selectively labeled. At early stages (postnatal day 1 and 3), the reactivity was intense and observed both around the cell surface and within the supranuclear region of cytoplasm. Later on, the reactivity decreased; it was limited at postnatal day 9 to a reactive spot below the cuticular plate. Results are compared with a preliminary finding describing the first appearance of B and H antigens in the organ of Corti at a prenatal stage, and with data concerning other sensory and neural structures. The appearance and progressive disappearance of B and H antigens on sensory and non-sensory cells can be correlated with significant events in the development of the cochlea. The transient expression of B and H antigens in cochlear sensory cells may correspond to developmental changes in their surface glycoconjugates.  相似文献   
95.
Summary The interior of Bowman's capsules of rat kidneys has been examined by scanning electron microscopy, and a distinctive population of cells around the exposed vascular poles of glomerular tufts were identified. The cells were situated in the annular groove at the root of the glomerulus, between the parietal epithelial cells and the podocytes. These peripolar cells were dendritic cells with long processes embracing the glomerular arterioles. Up to three peripolar cells were present at each vascular pole and they were mainly distributed in the glomeruli of the outer third of the renal cortex. This first detailed study of the surface morphology of the glomerular peripolar cell supports the suggestion that changes in the diameter of the polar region of the glomerular tuft may cause variations in stretching of the cuff of peripolar cells, and hence modulation of their secretory activity.  相似文献   
96.
Summary Chromaffin cells in the adrenal medulla are found in close proximity to capillary endothelial cells, thereby forming the classical endocrine complex. To examine the possible chemical basis of their interaction in more detail, we have grown bovine adrenal medullary endothelial (BAME) cells in monolayer cultures and added to them pheochromocytoma (PC12) cells, a chromaffin tumor cell line of rats. The PC12 cells were chosen because of the similarities they share with adrenal medullary chromaffin cells. PC12 cells rapidly attached to BAME cells cultures, their rate of adhesion being significantly enhanced over binding of PC12 cells to either uncoated plates or to monolayers of unrelated cell cultures. Consistent with this observation, we noted that the extracellular matrix (ECM) derived from the BAME cells did not enhance PC12 cell adhesion and did not promote neurite sprouting as previously described for ECM derived from corneal endothelial cells. The specific adhesion between PC12 and BAME cells could be abolished by cell surface extracts derived from these two cells but not by extracts derived from unrelated cell types. This activity was heat-labile, sensitive to trypsin and, to a lesser extent, to neuraminidase. We therefore conclude that PC12 cells may interact with BAME cells by specific proteinaceous adhesive factors associated with their plasma membranes. These interactions might represent the formative role of cell-cell contacts in the organization of the developing adrenal gland.Abbreviations BAME bovine adrenal medullary endothelial cells - DMEM Dulbecco's modified essential medium - ECM extracellular matrix - EMEM Eagle's modified essential medium - FCS fetal calf serum - PBS phosphate-buffered saline - PC12 rat pheochromocytoma cells  相似文献   
97.
Summary The morphology and function of isolated inner (zona fasciculata/reticularis) adrenocortical cells of rats pretreated with ACTH for 3, 6, 9 or 12 days were investigated. ACTH treatment induced a notable time-dependent enhancement in the steroidogenic capacity (corticosterone production) and growth of inner cells. The volumes of cells, mitochondrial compartment, membrane space [the cellular space occupied by smooth endoplasmic reticulum (SER) membranes] and lipid-droplet compartment, as well as the surface area of mitochondrial cristae and SER tubules, were increased in relation to the duration of ACTH pretreatment, and showed a highly significant positive linear correlation with both basal and stimulated corticosterone production. The acute exposure of isolated cells to ACTH provoked a striking lipid-droplet depletion, the extent of which was linearly and positively correlated with stimulated corticosterone secretion. The hypertrophy of the mitochondrial compartment and SER are interpreted as the morphological counterpart of the enhanced steroidogenic capacity of inner adrenocortical cells, inasmuch as the enzymes of steroid synthesis are located in these two organelles, and it is well known that chronic ACTH exposure stimulates the de novo synthesis of many of them in vivo. The rise in the number of lipid droplets, in which cholesterol is stored, is interpreted as being due to the fact that, under chronic ACTH treatment, the processes leading to cholesterol accumulation in adrenocortical cells (exogenous uptake and endogenous synthesis) exceed those of its utilization in basal steroid secretion. Cholesterol accumulated in lipid droplets as a reserve material may be rapidly utilized after acute ACTH exposure to meet the needs of the enhanced steroidogenic capacity of adrenocortical cells.  相似文献   
98.
Summary Pre-implantation-stage embryos from rats, mice, and guinea-pigs were transferred to a non-uterine site — the anterior chamber of the eye — of female recipients. All 9 combinations of transfers were performed: 3 allogeneic (intraspecies) transfers as controls, and 6 xenogeneic (interspecies) transfers. Implantation, as judged by extravasation from blood vessels of the iris or ciliary body occurred with success rates of 90.4% per transfer in the control rat group, 76.9% in the control mouse group, and 81.8% in the control guinea-pig group. Significantly reduced implantation rates occurred in the rat to guinea-pig (0%), mouse to rat (46.9%), mouse to guinea-pig (6.7%), and guinea-pig to rat (0%) groups compared to controls. Reductions, although not significant, also occurred in the other 2 groups: rat to mouse (77.8%), and guinea-pig to mouse (44.4%). These results together with some ultrastructural and lightmicroscopical observations suggest a degree of species specificity involved in the vascular response to the implanting embryo. We propose that the peri-implantation embryo produces a signal(s) which is to some extent species specific and which in the normal allogeneic situation is responsible for the early vascular effects seen at implantation in most eutherian mammals.  相似文献   
99.
Summary The junctional complexes of cells in the outer arachnoid layer overlying the cerebral cortex of 2-week-old rats were examined with freeze-fracture electron microscopy up to 60 min after transcranial cold injury to the dorsal surface of the brain. Within 30 min after injury, areas of gap and tight junctions with morphological features characteristic of junction formation and/or junction disruption were found scattered among normal junctional complexes in some arachnoid cells. Within 60 min after injury, tight junctions with features typical of less leaky zonulae occludentes were present in all arachnoid cells examined. These morphological features include increases in the number of tight junctional strands and the number of strand-to-strand anatomoses. Gap junctions were interspersed among the tight junctional strands, and many were completely encircled by the strands. The increase in the number and complexity of the tight junctional strands in response to brain injury may be the morphological basis for the maintenance of the cerebrospinal fluid-blood dural barrier.This study was supported by the National Institute of Neurological and Communicative Disorders and Stroke Grant NS20590. The opinions or assertions contained herein are the private ones of the authors and are not to be construed as official or reflecting the views of the DoD or the USUHS. The experiments reported herein were conducted according to the principles set forth in the Guide for Care and Use of Laboratory Animals, Institute of Laboratory Animal Resources, National Research Council, DHEW Pub. No. (NIH) 78-23  相似文献   
100.
Summary This study concerns the development of nasal-associated lymphoid tissue in the rat, using immuno- and enzyme-histochemical staining techniques on cryostat sections. Nasal-associated lymphoid tissue is present at birth as a small accumulation of mainly T lymphocytes and non-lymphoid cells; B cells are rare. Distinct areas of T and B cells appear at 10 days after birth; by that time high endothelial venules are also observed. Intra-epithelial lymphocytes are present, most of them being T-helper cells. ED1+ macrophages are seen throughout the tissue. The proportion of ED1+cells does not change during ontogeny. ED2+cells (tissue macrophages) are present predominantly at the border between the lymphoid tissue and the surrounding connective tissue, in all age-groups. ED3+mononuclear cells are scattered throughout the nasal-associated lymphoid tissue of young animals. Later on, the ED3+ cells migrate into the border-area between lymphoid and connective tissue. Ia+ non-lymphoid cells in the nasal lymphoid tissue increase in number during ontogeny. Only a few of them show acid phosphatase activity, indicating that the proportion of classical scavenger macrophages is low. Some of them may be antigen presenting (dendritic) cells. Ia+ dendritic cells also occur between the epithelial cells. Moreover, some epithelial cells express the Ia marker.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号