首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1924篇
  免费   167篇
  国内免费   91篇
  2023年   31篇
  2022年   25篇
  2021年   40篇
  2020年   64篇
  2019年   70篇
  2018年   78篇
  2017年   56篇
  2016年   48篇
  2015年   51篇
  2014年   55篇
  2013年   119篇
  2012年   55篇
  2011年   68篇
  2010年   73篇
  2009年   101篇
  2008年   117篇
  2007年   119篇
  2006年   104篇
  2005年   105篇
  2004年   99篇
  2003年   66篇
  2002年   54篇
  2001年   45篇
  2000年   39篇
  1999年   36篇
  1998年   40篇
  1997年   32篇
  1996年   31篇
  1995年   24篇
  1994年   26篇
  1993年   23篇
  1992年   27篇
  1991年   20篇
  1990年   21篇
  1989年   20篇
  1988年   10篇
  1987年   21篇
  1986年   10篇
  1985年   23篇
  1984年   24篇
  1983年   15篇
  1982年   19篇
  1981年   17篇
  1980年   18篇
  1979年   12篇
  1978年   8篇
  1977年   3篇
  1976年   3篇
  1975年   5篇
  1973年   7篇
排序方式: 共有2182条查询结果,搜索用时 15 毫秒
71.
The use of Process Analytical Technology tools coupled with chemometrics has been shown great potential for better understanding and control of mammalian cell cultivations through real-time process monitoring. In-line Raman spectroscopy was utilized to determine the glucose concentration of the complex bioreactor culture medium ensuring real-time information for our process control system. This work demonstrates a simple and fast method to achieve a robust partial least squares calibration model under laboratory conditions in an early phase of the development utilizing shake flask and bioreactor cultures. Two types of dynamic feeding strategies were accomplished where the multi-component feed medium additions were controlled manually and automatically based on the Raman monitored glucose concentration. The impact of these dynamic feedings was also investigated and compared to the traditional bolus feeding strategy on cellular metabolism, cell growth, productivity, and binding activity of the antibody product. Both manual and automated dynamic feeding strategies were successfully applied to maintain the glucose concentration within a narrower and lower concentration range. Thus, besides glucose, the glutamate was also limited at low level leading to reduced production of inhibitory metabolites, such as lactate and ammonia. Consequently, these feeding control strategies enabled to provide beneficial cultivation environment for the cells. In both experiments, higher cell growth and prolonged viable cell cultivation were achieved which in turn led to increased antibody product concentration compared to the reference bolus feeding cultivation.  相似文献   
72.
The Food and Drug Administration (FDA) initiative of Process Analytical Technology (PAT) encourages the monitoring of biopharmaceutical manufacturing processes by innovative solutions. Raman spectroscopy and the chemometric modeling tool partial least squares (PLS) have been applied to this aim for monitoring cell culture process variables. This study compares the chemometric modeling methods of Support Vector Machine radial (SVMr), Random Forests (RF), and Cubist to the commonly used linear PLS model for predicting cell culture components—glucose, lactate, and ammonia. This research is performed to assess whether the use of PLS as standard practice is justified for chemometric modeling of Raman spectroscopy and cell culture data. Model development data from five small-scale bioreactors (2 × 1 L and 3 × 5 L) using two Chinese hamster ovary (CHO) cell lines were used to predict against a manufacturing scale bioreactor (2,000 L). Analysis demonstrated that Cubist predictive models were better for average performance over PLS, SVMr, and RF for glucose, lactate, and ammonia. The root mean square error of prediction (RMSEP) of Cubist modeling was acceptable for the process concentration ranges of glucose (1.437 mM), lactate (2.0 mM), and ammonia (0.819 mM). Interpretation of variable importance (VI) results theorizes the potential advantages of Cubist modeling in avoiding interference of Raman spectral peaks. Predictors/Raman wavenumbers (cm−1) of interest for individual variables are X1139–X1141 for glucose, X846–X849 for lactate, and X2941–X2943 for ammonia. These results demonstrate that other beneficial chemometric models are available for use in monitoring cell culture with Raman spectroscopy.  相似文献   
73.
A new series of complexes is synthesized by template condensation of oxalyldihydrazide and glyoxal in methanolic medium in the presence of trivalent chromium, manganese and iron salts forming complexes of the type: [M(C8H8N8O4)X]X2 where M = Cr(III), Mn(III), Fe(III) and X = Cl? 1, , CH3COO? 1. The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic susceptibility measurements, electronic, NMR, infrared and far infrared spectral studies. On the basis of these studies, a five coordinate square pyramidal geometry for these complexes has been proposed. The biological activities of the metal complexes were tested in vitro against a number of pathogenic bacteria and some of the complexes exhibited remarkable antibacterial activities.  相似文献   
74.
A novel series of complexes of the type [M(C36H22N6)X]X2, where M = Cr(III), Mn(III), Fe(III); X = Cl?, NO3?, CH3COO?; and (C36H22N6) corresponds to the tetradentate macrocyclic ligand, have been synthesized by condensation of 1,8-diaminonaphthalene and isatin in the presence of trivalent metal salts in methanolic medium. The complexes have been characterized by elemental analysis, conductance and magnetic measurements, and UV/Vis, IR, and mass spectroscopy. On the basis of these studies, a five coordinate square pyramidal geometry for all of these complexes is proposed. All synthesized macrocyclic complexes have been tested for in vitro antimicrobial activities against some pathogenic bacterial strains, viz. Staphylococcus aureus, Bacillus subtilis (Gram-positive), Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and two fungal strains, viz. Aspergillus niger, Aspergillus flavus. The MICs shown by the complexes against these microbial strains have been compared with MICs shown by standard antibiotic ciprofloxacin and the antifungal drug amphotericin-B.  相似文献   
75.
Time‐resolved fluorescence as well as steady‐state absorption and fluorescence were detected in order to study the interactions between tetramethylrhodamine (TAMRA) and DNA when TAMRA was covalently labeled on single‐ and double‐stranded oligonucleotides. Fluorescence intensity quenching and lifetime changes were characterized and correlated with different DNA sequences. The results demonstrated that the photoinduced electron transfer interaction between guanosine residues and TAMRA introduced a short lifetime fluorescence component when guanosine residues were at the TAMRA‐attached terminal of the DNA sequences. The discrepancy of two‐state and three‐state models in previous studies was due to the DNA sequence selection and sensitivity of techniques used to detect the short lifetime component. The results will help the design of fluorescence‐based experiments related to a dye labeled probe. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
76.
Topology analysis of membrane proteins can be obtained by enzymatic shaving in combination with MS identification of peptides. Ideally, such analysis could provide quite detailed information about the membrane spanning regions. Here, we examine the ability of some shaving enzymes to provide large‐scale analysis of membrane proteome topologies. To compare different shaving enzymes, we first analyzed the detected peptides from two over‐expressed proteins. Second, we analyzed the peptides from non‐over‐expressed Escherichia coli membrane proteins with known structure to evaluate the shaving methods. Finally, the identified peptides were used to test the accuracy of a number of topology predictors. At the end we suggest that the usage of thermolysin, an enzyme working at the natural pH of the cell for membrane shaving, is superior because: (i) we detect a similar number of peptides and proteins using thermolysin and trypsin; (ii) thermolysin shaving can be run at a natural pH and (iii) the incubation time is quite short. (iv) Fewer detected peptides from thermolysin shaving originate from the transmembrane regions. Using thermolysin shaving we can also provide a clear separation between the best and the less accurate topology predictors, indicating that using data from shaving can provide valuable information when developing new topology predictors.  相似文献   
77.
Searching spectral libraries in MS/MS is an important new approach to improving the quality of peptide and protein identification. The idea relies on the observation that ion intensities in an MS/MS spectrum of a given peptide are generally reproducible across experiments, and thus, matching between spectra from an experiment and the spectra of previously identified peptides stored in a spectral library can lead to better peptide identification compared to the traditional database search. However, the use of libraries is greatly limited by their coverage of peptide sequences: even for well‐studied organisms a large fraction of peptides have not been previously identified. To address this issue, we propose to expand spectral libraries by predicting the MS/MS spectra of peptides based on the spectra of peptides with similar sequences. We first demonstrate that the intensity patterns of dominant fragment ions between similar peptides tend to be similar. In accordance with this observation, we develop a neighbor‐based approach that first selects peptides that are likely to have spectra similar to the target peptide and then combines their spectra using a weighted K‐nearest neighbor method to accurately predict fragment ion intensities corresponding to the target peptide. This approach has the potential to predict spectra for every peptide in the proteome. When rigorous quality criteria are applied, we estimate that the method increases the coverage of spectral libraries available from the National Institute of Standards and Technology by 20–60%, although the values vary with peptide length and charge state. We find that the overall best search performance is achieved when spectral libraries are supplemented by the high quality predicted spectra.  相似文献   
78.
Mass spectrometry (MS) analysis of peptides carrying post‐translational modifications is challenging due to the instability of some modifications during MS analysis. However, glycopeptides as well as acetylated, methylated and other modified peptides release specific fragment ions during CID (collision‐induced dissociation) and HCD (higher energy collisional dissociation) fragmentation. These fragment ions can be used to validate the presence of the PTM on the peptide. Here, we present PTM MarkerFinder, a software tool that takes advantage of such marker ions. PTM MarkerFinder screens the MS/MS spectra in the output of a database search (i.e., Mascot) for marker ions specific for selected PTMs. Moreover, it reports and annotates the HCD and the corresponding electron transfer dissociation (ETD) spectrum (when present), and summarizes information on the type, number, and ratios of marker ions found in the data set. In the present work, a sample containing enriched N‐acetylhexosamine (HexNAc) glycopeptides from yeast has been analyzed by liquid chromatography‐mass spectrometry on an LTQ Orbitrap Velos using both HCD and ETD fragmentation techniques. The identification result (Mascot .dat file) was submitted as input to PTM MarkerFinder and screened for HexNAc oxonium ions. The software output has been used for high‐throughput validation of the identification results.  相似文献   
79.
The activation of dehaloperoxidase-hemoglobin (DHP) to form a ferryl intermediate requires the distal histidine, H55, to act as an acid base catalyst. The lack of ancillary amino acids in the distal pocket to assist in this process makes H55 even more important to the formation of active intermediates than in conventional peroxidases. Therefore, one can infer that the precise conformation H55 may greatly affect the enzymatic activity. Using site-direct mutagenesis at position T56, immediately adjacent to H55, we have confirmed that subtle changes in the conformation of H55 affect the catalytic efficiency of DHP. Mutating T56 to a smaller amino acid appears to permit H55 to rotate with relatively low barriers between conformations in the distal pocket, which may lead to an increase in catalytic activity. On the other hand, larger amino acids in the neighboring site appear to restrict the rotation of H55 due to the steric hindrance. In the case of T56V, which is an isosteric mutation, H55 appears less mobile, but forced to be closer to the heme iron than in wild type. Both proximity to the heme iron and flexibility of motion in some of the mutants can result in an increased catalytic rate, but can also lead to protein inactivation due to ligation of H55 to the heme iron, which is known as hemichrome formation. A balance of enzymatic rate and protein stability with respect to hemichrome formation appears to be optimum in wild type DHP (WT-DHP).  相似文献   
80.
The vast majority of environmental bacteria remain uncultured, despite two centuries of effort in cultivating microorganisms. Our knowledge of their physiology and metabolic activity depends to a large extent on methods capable of analyzing single cells. Bacterial identification is a key step required by all currently used single-cell imaging techniques and is typically performed by means of fluorescent labeling. However, fluorescent cells cannot be visualized by ion- and electron microscopy and thus only correlative, indirect, cell identification is possible. Here we present a new method of bacterial identification by in situ hybridization coupled to the deposition of elemental silver nanoparticles (silver-DISH). We show that hybridized cells containing silver can be directly visualized by light microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, secondary ion mass spectrometry (nanoSIMS), and confocal Raman micro-spectroscopy. Silver-DISH did not alter the isotopic (13C) and elemental composition of stable-isotope probed cells more than other available hybridization methods, making silver-DISH suitable for broad applications in stable-isotope labeling studies. Additionally, we demonstrate that silver-DISH can induce a surface-enhanced Raman scattering (SERS) effect, amplifying the Raman signal of biomolecules inside bacterial cells. This makes silver-DISH the only currently available method that is capable of delivering a SERS-active substrate inside specifically targeted microbial cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号