首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1924篇
  免费   167篇
  国内免费   91篇
  2023年   31篇
  2022年   25篇
  2021年   40篇
  2020年   64篇
  2019年   70篇
  2018年   78篇
  2017年   56篇
  2016年   48篇
  2015年   51篇
  2014年   55篇
  2013年   119篇
  2012年   55篇
  2011年   68篇
  2010年   73篇
  2009年   101篇
  2008年   117篇
  2007年   119篇
  2006年   104篇
  2005年   105篇
  2004年   99篇
  2003年   66篇
  2002年   54篇
  2001年   45篇
  2000年   39篇
  1999年   36篇
  1998年   40篇
  1997年   32篇
  1996年   31篇
  1995年   24篇
  1994年   26篇
  1993年   23篇
  1992年   27篇
  1991年   20篇
  1990年   21篇
  1989年   20篇
  1988年   10篇
  1987年   21篇
  1986年   10篇
  1985年   23篇
  1984年   24篇
  1983年   15篇
  1982年   19篇
  1981年   17篇
  1980年   18篇
  1979年   12篇
  1978年   8篇
  1977年   3篇
  1976年   3篇
  1975年   5篇
  1973年   7篇
排序方式: 共有2182条查询结果,搜索用时 234 毫秒
61.
Five spirostanol glycosides and two furostanol glycosides were isolated from Dioscorea floribunda. In addition to the IR spectra of the free glycosides and the MS of the peracetates and permethyl ethers, the most effective method for structural determination proved to be the NMR spectra of the free saponins in pyridine-d5.  相似文献   
62.
The mass spectra of trimethylsilyl ethers of six gibberellin-β-d-glucopyranosyl ethers and five gibberellin-β-d-glucopyranosyl esters are discussed. The fragmentation patterns are shown to be affected by the structural variations of the aglycones.  相似文献   
63.
Existing approaches for early‐stage bladder tumor diagnosis largely depend on invasive and time‐consuming procedures, resulting in hospitalization, bleeding, bladder perforation, infection and other health risks for the patient. The reduction of current risk factors, while maintaining or even improving the diagnostic precision, is an underlying factor in clinical instrumentation research. For example, for clinic surveillance of patients with a history of noninvasive bladder tumors real‐time tumor diagnosis can enable immediate laser‐based removal of tumors using flexible cystoscopes in the outpatient clinic. Therefore, novel diagnostic modalities are required that can provide real‐time in vivo tumor diagnosis. Raman spectroscopy provides biochemical information of tissue samples ex vivo and in vivo and without the need for complicated sample preparation and staining procedures. For the past decade there has been a rise in applications to diagnose and characterize early cancer in different organs, such as in head and neck, colon and stomach, but also different pathologies, for example, inflammation and atherosclerotic plaques. Bladder pathology has also been studied but only with little attention to aspects that can influence the diagnosis, such as tissue heterogeneity, data preprocessing and model development. The present study presents a clinical investigative study on bladder biopsies to characterize the tumor grading ex vivo, using a compact fiber probe‐based imaging Raman system, as a crucial step towards in vivo Raman endoscopy. Furthermore, this study presents an evaluation of the tissue heterogeneity of highly fluorescent bladder tissues, and the multivariate statistical analysis for discrimination between nontumor tissue, and low‐ and high‐grade tumor.  相似文献   
64.
Amyloid fibrils are associated with numerous degenerative diseases. The molecular mechanism of the structural transformation of native protein to the highly ordered cross‐β structure, the key feature of amyloid fibrils, is under active investigation. Conventional biophysical methods have limited application in addressing the problem because of the heterogeneous nature of the system. In this study, we demonstrated that deep‐UV resonance Raman (DUVRR) spectroscopy in combination with circular dichroism (CD) and intrinsic tryptophan fluorescence allowed for quantitative characterization of protein structural evolution at all stages of hen egg white lysozyme fibrillation in vitro. DUVRR spectroscopy was found to be complimentary to the far‐UV CD because it is (i) more sensitive to β ‐sheet than to α ‐helix, and (ii) capable of characterizing quantitatively inhomogeneous and highly light‐scattering samples. In addition, phenylalanine, a natural DUVRR spectroscopic biomarker of protein structural rearrangements, exhibited substantial changes in the Raman cross section of the 1000‐cm–1 band at various stages of fibrillation. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
65.
Two nuclear gene mutants of pea, chlorotica-887 and chlorina-5756, are temperature-sensitive in the development of photosystem II activity. Low temperature flourescence emission spectra of leaves show that the peak at 697 nm from the reaction center of photosystem II is present when the mutants have been grown at 18°C, but absent when they have been grown at 30°C. For leaves of chlorina-5756 grown at 18°C the relative size of the peak at 697 nm is reduced compared to that of leaves of the wild type or chlorotica-887 grown at this temperature. Flourescence induction curves of leaves from wild type plants and chlorotica-887 grown at 18°C possess two steps, while those of leaves from chlorina-5756 grown at 18°C or 30°C and chlorotica-887 grown at 30°C show at fast rise to the maximal level of fluorescence. Measurements on chloroplasts isolated from the mutants indicated that the photosystem I activity per g leaf material is comparable for plants grown at 18°C and plants grown at 30°C. In contrast, no photosystem II activity was detected when the mutants had been grown at 30°C. It is suggested that these mutants are affected in a component required for the assembly of functional photosystem II complexes.  相似文献   
66.
Microscale pigment adjustments to a tropical photosynthetically active radiation and ultraviolet (UV) environment by the intertidal turf algae Ahnfeltiopsis concinna (J. Ag.) Silva et DeCew and Laurencia mcdermidiae (J. Ag) Abbott were promoted by thalli densities that self-shade the under story portions of the same diminutive axes. Tissues of A. concinna from canopy microsites had significantly reduced levels of phycoerythrin, phycocyanin, and allophycocyanin compared to tissues from understory microsites of the same axes. Tissues of L. mcdermidiae from canopy microsites had reduced levels of only phycoerythrin compared to tissues from understory microsites. These alterations coupled with enhanced levels of carotenoid and UV-absorbing compounds in tissues from canopy compared to tissues from understory microsites indicated a pattern of remarkably sensitive photoacclimation over the ≤10-cm axes of these turf-forming rhodophytes. Microscale variation in the in vivo UV absorbance capabilities for turfs of A. concinna and L. mcdermidiae was directly related to the amount of extractable UV-absorbing compounds. An in vivo absorbance signature at ~345 nm appears to provide a method to quickly and accurately gauge the potential UV-shielding capacity of primary producers even at remarkably fine ecological scales. The capacity for highly responsive biochemical adjustments that result in marked canopy–understory distinctions coupled with a turf morphology may be crucial for macroalgal tolerance of physiological stresses associated with tropical intertidal zones. This responsive capacity allows for enhanced photoprotective mechanisms in tissues from canopy microsites while optimizing irradiance capture in deeply shaded tissues from understory microsites < 10 cm away.  相似文献   
67.
Transition metal sulfides hold promising potentials as Li‐free conversion‐type cathode materials for high energy density lithium metal batteries. However, the practical deployment of these materials is hampered by their poor rate capability and short cycling life. In this work, the authors take the advantage of hollow structure of CuS nanoboxes to accommodate the volume expansion and facilitate the ion diffusion during discharge–charge processes. As a result, the hollow CuS nanoboxes achieve excellent rate performance (≈371 mAh g?1 at 20 C) and ultra‐long cycle life (>1000 cycles). The structure and valence evolution of the CuS nanobox cathode are identified by scanning electron microscopy, transmission electron microscopy, and X‐ray photoelectron spectroscopy. Furthermore, the lithium storage mechanism is revealed by galvanostatic intermittent titration technique and operando Raman spectroscopy for the initial charge–discharge process and the following reversible processes. These results suggest that the hollow CuS nanobox material is a promising candidate as a low‐cost Li‐free cathode material for high‐rate and long‐life lithium metal batteries.  相似文献   
68.
Microfluidic technologies are highly adept at generating controllable compositional gradients in fluids, a feature that has accelerated the understanding of the importance of chemical gradients in biological processes. That said, the development of versatile methods to generate controllable compositional gradients in the solid‐state has been far more elusive. The ability to produce such gradients would provide access to extensive compositional libraries, thus enabling the high‐throughput exploration of the parametric landscape of functional solids and devices in a resource‐, time‐, and cost‐efficient manner. Herein, the synergic integration of microfluidic technologies is reported with blade coating to enable the controlled formation of compositional lateral gradients in solution. Subsequently, the transformation of liquid‐based compositional gradients into solid‐state thin films using this method is demonstrated. To demonstrate efficacy of the approach, microfluidic‐assisted blade coating is used to optimize blending ratios in organic solar cells. Importantly, this novel technology can be easily extended to other solution processable systems that require the formation of solid‐state compositional lateral gradients.  相似文献   
69.
Organic solar cells based on ternary active layers can lead to higher power conversion efficiencies than corresponding binaries, and improved stability. The parameter space for optimization of multicomponent systems is considerably more complex than that of binaries, due to both, a larger number of parameters (e.g., two relative compositions rather than one) and intricate morphology–property correlations. Most experimental reports to date reasonably limit themselves to a relatively narrow subset of compositions (e.g., the 1:1 donor/s:acceptor/s trajectory). This work advances a methodology that allows exploration of a large fraction of the ternary phase space employing only a few (<10) samples. Each sample is produced by a designed sequential deposition of the constituent inks, and results in compositions gradients with ≈5000 points/sample that cover about 15%–25% of the phase space. These effective ternary libraries are then colocally imaged by a combination of photovoltaic techniques (laser and white light photocurrent maps) and spectroscopic techniques (Raman, photoluminescence, absorption). The generality of the methodology is demonstrated by investigating three ternary systems, namely PBDB‐T:ITIC:PC70BM, PTB7‐Th:ITIC:PC70BM, and P3HT:O‐IDFBR:O‐IDTBR. Complex performance‐structure landscapes through the ternary diagram as well as the emergence of several performance maxima are discovered.  相似文献   
70.
The plasma membrane is a lipid bilayer of < 10 nm width that separates intra- and extra-cellular environments and serves as the site of cell-cell communication, as well as communication between cells and the extracellular environment. As such, biophysical phenomena at and around the plasma membrane play key roles in determining cellular physiology and pathophysiology. Thus, the selective visualization and characterization of the plasma membrane are crucial aspects of research in wide areas of biology and medicine. However, the specific characterization of the plasma membrane has been a challenge using conventional imaging techniques, which are unable to effectively distinguish between signals arising from the plasma membrane and those from intracellular lipid structures. In this regard, interface-specific second harmonic generation (SHG) and sum-frequency generation (SFG) imaging demonstrate great potential. When combined with exogenous SHG/SFG active dyes, SHG/SFG can specifically highlight the plasma membrane as the most prominent interface associated with cells. Furthermore, SHG/SFG imaging can be readily extended to multimodal multiphoton microscopy with simultaneous occurrence of other multiphoton phenomena, including multiphoton excitation and coherent Raman scattering, which shed light on the biophysical properties of the plasma membrane from different perspectives. Here, we review traditional and current applications, as well as the prospects of long-known but unexplored SHG/SFG imaging techniques in biophysics, with special focus on their use in the biophysical characterization of the plasma membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号