首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3714篇
  免费   512篇
  国内免费   66篇
  2024年   15篇
  2023年   92篇
  2022年   110篇
  2021年   279篇
  2020年   282篇
  2019年   272篇
  2018年   228篇
  2017年   145篇
  2016年   130篇
  2015年   190篇
  2014年   300篇
  2013年   256篇
  2012年   209篇
  2011年   202篇
  2010年   132篇
  2009年   147篇
  2008年   145篇
  2007年   131篇
  2006年   138篇
  2005年   109篇
  2004年   89篇
  2003年   83篇
  2002年   66篇
  2001年   47篇
  2000年   47篇
  1999年   43篇
  1998年   32篇
  1997年   55篇
  1996年   28篇
  1995年   21篇
  1994年   38篇
  1993年   26篇
  1992年   30篇
  1991年   23篇
  1990年   22篇
  1989年   14篇
  1988年   14篇
  1987年   11篇
  1986年   8篇
  1985年   10篇
  1984年   23篇
  1983年   6篇
  1982年   11篇
  1981年   6篇
  1980年   4篇
  1979年   6篇
  1978年   2篇
  1977年   5篇
  1976年   2篇
  1974年   5篇
排序方式: 共有4292条查询结果,搜索用时 125 毫秒
31.
模拟5000m中度缺氧时,大鼠右室功能显著加强,而左室功能加强不显著;左右心室肌原纤维Ca2+,Mg2+-ATP酶活性下降,肌球蛋白同功酶V2和V3百分含量增加,V1百分含量减少。8000m重度缺氧时,右室功能减弱,但无统计学意义,左室功能减弱有显著性;ATP酶活性和同功酶的变化超过5000m组。此外,右室ATP酶活性与PAP呈反比且有显著性,左室ATP酶活性与CASP虽也呈反比但无显著性;右室同功酶V3百分含量与PAP呈正比,左室同功酶V3百分含量与CASP不呈比例。上述结果表明,因短期突发严重缺氧引起的心肌供氧不足对左心室心肌的直接损伤作用大于右心室心肌。  相似文献   
32.
Summary Cystic fibrosis (CF) involves abnormalities in mucus production and secretion of the airway. Studies of the regulation of airway mucin production and secretion has been difficult due to the lack of in vitro models of the airway epithelial cells which express functional differentiation. Because the majority of the mucin in the airway is apparently produced by the submucosal glands, we have focused our attention on the development of cell culture models of human airway submucosal glands. This report describes the propagation of CF airway submucosal gland epithelial cells which continue to express mucin production. The CF bronchus was obtained from a 31-yr-old patient who received a double lung transplant. The glands were dissected out and primary cultures prepared by the explant/outgrowth procedure. The cells were immortalized by infection with Adl2-SV40 hybrid virus. The cultures are maintained in serum-free keratinocyte basal medium supplemented with insulin (5μg/ml), hydrocortisone (0.5μg/ml), epidermal growth factor (10 ng/ml), bovine pituitary extract (25μg/ml), and antibiotics. Cultures were passaged using 0.125% trypsin in Ca+2 and Mg+2-free Hanks’, balanced salt solution. Polymerase chain reaction (PCR) analysis demonstrated that the cells were homozygous for the ΔF508 mutation. Morphologic observations showed that the cells were epithelial and were interconnected by sparsely distributed desmosomes. Their cytoplasm contained secretory-type structures including abundant Golgi, rough endoplasmic reticulum, and secretory vesicles. Immunofluorescent studies determined that all cells were positive for cytokeratins, mucin glycoconjugates, and cystic fibrosis transmembrane conductance regulator. The cultures secreted substantial amounts of mucin glycoproteins and expressed the MUC-2 mucin gene. Patch clamp experiments revealed that the cells expressed defective Cl channels which were not activated by Forskolin.  相似文献   
33.
1. 1. The ventilatory and pulmonary gas exchange responses during moderate exercise can be appropriately modelled with first-order dynamics.
2. 2. A delay term, reflecting tissue-to-lung transit time, is needed for accurate characterization, however.
3. 3. The O2 uptake time constant ( reflects the enzymatically controlled tissue O2 utilization.
4. 4. is appreciably longer than , consequent to the tissue CO2 capacitance.
5. 5. As typically longer than , transient errors in alveolar and arterial blood gas tensions are predicted: small for PCO2 but much larger for PO2.
6. 6. At work rates above the lactate threshold, a slow and delayed component of V̇O2 induces an additional V̇ component (“excess” V̇O2), leading to more rapid fatigue.
7. 7. The ventilatory compensation for the metabolic acidemia at these work rates is slow, with compensation being poor for rapid-incremental exercise.
8. 8. A justifiable control model of the coupling of ventilation to metabolism must cohere with these demonstrable physiological characteristics.
Keywords: Ventilation; pulmonary gas exchange; excess V̇O2; compensatory hyperpnea; model order  相似文献   
34.
采用SDS聚丙烯酰胺凝胶电泳银染色的方法,对58例肺癌患者和32例肺结核患者的血清蛋白进行比较分析,发现有五种特异蛋白,分别存在于A区、C区、F区和G区。肺癌组和肺结核组比较,存在极显著性差异(P<0.01),提示有早期诊断肺癌的价值,有可能成为临床诊断肺癌的一个重要参考指标。  相似文献   
35.
36.
37.
Elevated arginases including type-I (Arg-I) and type-II isoenzyme (Arg-II) are reported to play a role in aging, age-associated organ inflammaging, and fibrosis. A role of arginase in pulmonary aging and underlying mechanisms are not explored. Our present study shows increased Arg-II levels in aging lung of female mice, which is detected in bronchial ciliated epithelium, club cells, alveolar type 2 (AT2) pneumocytes, and fibroblasts (but not vascular endothelial and smooth muscle cells). Similar cellular localization of Arg-II is also observed in human lung biopsies. The age-associated increase in lung fibrosis and inflammatory cytokines, including IL-1β and TGF-β1 that are highly expressed in bronchial epithelium, AT2 cells, and fibroblasts, are ameliorated in arg-ii deficient (arg-ii−/−) mice. The effects of arg-ii/− on lung inflammaging are weaker in male as compared to female animals. Conditioned medium (CM) from human Arg-II-positive bronchial and alveolar epithelial cells, but not that from arg-ii−/− cells, activates fibroblasts to produce various cytokines including TGF-β1 and collagen, which is abolished by IL-1β receptor antagonist or TGF-β type I receptor blocker. Conversely, TGF-β1 or IL-1β also increases Arg-II expression. In the mouse models, we confirmed the age-associated increase in IL-1β and TGF-β1 in epithelial cells and activation of fibroblasts, which is inhibited in arg-ii/− mice. Taken together, our study demonstrates a critical role of epithelial Arg-II in activation of pulmonary fibroblasts via paracrine release of IL-1β and TGF-β1, contributing to pulmonary inflammaging and fibrosis. The results provide a novel mechanistic insight in the role of Arg-II in pulmonary aging.  相似文献   
38.
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease that seriously threatens the health of patients. The pathogenesis of IPF is still unclear, and there is a lack of effective therapeutic drugs. Myofibroblasts are the main effector cells of IPF, leading to excessive deposition of extracellular matrix (ECM) and promoting the progression of fibrosis. Inhibiting the excessive activation and relieving autophagy blockage of myofibroblasts is the key to treat IPF. PI3K/Akt/mTOR pathway plays a key regulatory role in promoting fibroblast activation and autophagy inhibition in lung fibrosis. Duvelisib is a PI3K inhibitor that can simultaneously inhibit the activities of PI3K-δ and PI3K-γ, and is mainly used for the treatment of relapsed/refractory chronic lymphocytic leukaemia (CLL) and small lymphocytic lymphoma tumour (SLL). In this study, we aimed to examine the effects of Duvelisib on pulmonary fibrosis. We used a mouse model of bleomycin-induced pulmonary fibrosis to evaluate the effects of Duvelisib on pulmonary fibrosis in vivo and further explored the potential pharmacological mechanisms of Duvelisib in lung fibroblasts in vitro. The in vivo experiments showed that Duvelisib significantly alleviated bleomycin-induced collagen deposition and improved pulmonary function. In vitro and in vivo pharmacological experiments showed that Duvelisib dose-dependently suppressed lung fibroblast activation and improved autophagy inhibition by inhibiting the phosphorylation of PI3K, Akt and mTOR. Our results indicate that Duvelisib can alleviate the severity of pulmonary fibrosis and provide potential drugs for the treatment of pulmonary fibrosis.  相似文献   
39.
Liver fibrosis is one of the major liver complications which eventually progresses to liver cirrhosis and liver failure. Cerium oxide nanoparticles, also known as nanoceria (NC) are nanoparticles with potential antioxidant and anti-inflammatory activities. Herein, we evaluated the hepatoprotective and anti-fibrotic effects of nanoceria (NC) against bile duct ligation (BDL) induced liver injury. NC were administered i.p. for 12 days (0.5 and 2 mg/kg) to C57BL/6J mice. The biochemical markers of liver injury, oxidative and nitrosative stress markers, inflammatory cytokines were evaluated. Fibrosis assessment and mechanistic studies were conducted to assess the hepatoprotective effects of NC. Administration of NC proved to significantly ameliorate liver injury as evident by reduction in SGOT, SGPT, ALP and bilirubin levels in the treated animals. NC treatment significantly reduced the hydroxyproline levels and expression of fibrotic markers. In summary, our findings establish the hepatoprotective and anti-fibrotic effects of NC against BDL induced liver injury and liver fibrosis. These protective effects were majorly ascribed to their potential ROS inhibition and antioxidant activities through catalase, superoxide dismutase (SOD)-mimetic properties and auto-regenerating capabilities.  相似文献   
40.
Nonalcoholic fatty liver disease (NAFLD) is a strong stimulant of cardiovascular diseases, affecting one-quarter of the world's population. TBC1 domain family member 25 (TBC1D25) regulates the development of myocardial hypertrophy and cerebral ischemia–reperfusion injury; however, its effect on NAFLD/nonalcoholic steatohepatitis (NASH) has not been reported. In this study, we demonstrated that TBC1D25 expression is upregulated in NASH. TBC1D25 deficiency aggravated hepatic steatosis, inflammation, and fibrosis in NASH. In vitro tests revealed that TBC1D25 overexpression restrained NASH responses. Subsequent mechanistic validation experiments demonstrated that TBC1D25 interfered with NASH progression by inhibiting abnormal lipid accumulation and inflammation. TBC1D25 deficiency significantly promoted NASH occurrence and development. Therefore, TBC1D25 may potentially be used as a clinical therapeutic target for NASH treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号