首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35321篇
  免费   1749篇
  国内免费   1379篇
  2023年   405篇
  2022年   470篇
  2021年   887篇
  2020年   902篇
  2019年   1288篇
  2018年   1187篇
  2017年   720篇
  2016年   851篇
  2015年   1099篇
  2014年   2151篇
  2013年   2572篇
  2012年   1468篇
  2011年   2204篇
  2010年   1590篇
  2009年   1698篇
  2008年   1916篇
  2007年   1925篇
  2006年   1735篇
  2005年   1538篇
  2004年   1378篇
  2003年   1196篇
  2002年   1114篇
  2001年   697篇
  2000年   635篇
  1999年   626篇
  1998年   632篇
  1997年   507篇
  1996年   424篇
  1995年   472篇
  1994年   446篇
  1993年   353篇
  1992年   336篇
  1991年   311篇
  1990年   243篇
  1989年   206篇
  1988年   183篇
  1987年   193篇
  1986年   165篇
  1985年   211篇
  1984年   259篇
  1983年   212篇
  1982年   227篇
  1981年   191篇
  1980年   170篇
  1979年   118篇
  1978年   91篇
  1977年   57篇
  1976年   58篇
  1974年   32篇
  1973年   30篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
61.
《Developmental cell》2022,57(14):1694-1711.e7
  1. Download : Download high-res image (191KB)
  2. Download : Download full-size image
  相似文献   
62.
The regulatory protein collybistin (CB) recruits the receptor-scaffolding protein gephyrin to mammalian inhibitory glycinergic and GABAergic postsynaptic membranes in nerve cells. CB is tethered to the membrane via phosphoinositides. We developed an in vitro assay based on solid-supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes doped with different phosphoinositides on silicon/silicon dioxide substrates to quantify the binding of various CB2 constructs using reflectometric interference spectroscopy. Based on adsorption isotherms, we obtained dissociation constants and binding capacities of the membranes. Our results show that full-length CB2 harboring the N-terminal Src homology 3 (SH3) domain (CB2SH3+) adopts a closed and autoinhibited conformation that largely prevents membrane binding. This autoinhibition is relieved upon introduction of the W24A/E262A mutation, which conformationally “opens” CB2SH3+ and allows the pleckstrin homology domain to properly bind lipids depending on the phosphoinositide species with a preference for phosphatidylinositol 3-monophosphate and phosphatidylinositol 4-monophosphate. This type of membrane tethering under the control of the release of the SH3 domain of CB is essential for regulating gephyrin clustering.  相似文献   
63.
Little work has been carried out on the sperm recognition systems present on the egg plasma membrane. Here it is shown that wheat germ agglutinin (WGA) interferes with the sperm-interacting system on the plasma membrane of eggs of the ascidian, Ascidia ceratodes. The WGA activates the dechorionated egg, indicating that a plasma membrane sugar residue can be directly tied to egg activation. Low concentrations of this lectin do not activate the eggs, but reduce fertilizability. This observation suggests that the WGA binding site might be part of a sperm reception–activation complex in the plasma membrane. While WGA also affects sperm binding to the chorion, the mechanisms of sperm interaction at the plasma membrane and chorion show different sensitivities to lectins, sugars and enzymes.  相似文献   
64.
In the present study we have evaluated the antigenotoxic effects of Farnesol (FL) a 15-carbon isoprenoid alcohol against benzo (a) pyrene [B(a)P] (125 mg kg? 1.b.wt oral) induced toxicity. B(a)P administration lead to significant induction in Cytochrome P450 (CYP) content and aryl hydrocarbon hydrolase (AHH) activity (p < 0.001), DNA strand breaks and DNA adducts (p < 0.001) formation. FL was shown to suppress the activities of both CYP and AHH (p < 0.005) in modulator groups. FL pretreatment significantly (p < 0.001) restored depleted levels of reduced glutathione (GSH), quinone reductase (QR) and glutathione –S-transferase (GST). A simultaneous significant and at both the doses reduction was seen in DNA strand breaks and in in-vivo DNA adducts formation (p < 0.005), which gives some insight on restoration of DNA integrity. The results support the protective nature of FL. Hence present data supports FL as a future drug to preclude B (a) P induced toxicity.  相似文献   
65.
66.
Summary The sensory receptor responsive to pressure applied internally to the ventral abdominal body wall of the blood-feeding insects, Rhodnius prolixus, is a single sense cell containing, at its distal end, a cilium enclosed within a scolopale, a densely staining structure characteristic of insect scolopidial sensilla. A small spherical structure lies within a dilation near the midregion of the cilium, and contains nine heavily staining bodies, the position of each corresponding to a pair of microtubules in the cilium. Proximal to the dilation, the microtubules are organized in a ring of nine pairs with one microtubule of each pair associated with dyneinlike arms. Dastal to the dilation a central pair of microtubules is present, but dyneinlike arms are absent. The scolopale cell, which gives risc to the scolopale, has cytoplasmic invaginations that form an elaborate array of extracellular compartments surrounding the body wall of the sense cell. These compartments may serve to dampen high frequency vibrations permitting the receptor to respond to pressure exerted by touch, an attribute in keeping with the receptor's proposed function of detecting abdominal distension related to the size and movement of the stomach.  相似文献   
67.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   
68.
The National Cancer Institute (NCI) Diversity Set was screened for potential inhibitors of phospho-MurNAc-pentapeptide translocase MraY from Escherichia coli using a primary fluorescence enhancement assay, followed by a secondary radiochemical assay. One new MraY inhibitor was identified from this screen, a naphthylisoquinoline alkaloid michellamine B, which inhibited E. coli MraY (IC50 456 μM) and Bacillus subtilis MraY (IC50 386 μM), and which showed antimicrobial activity against B. subtilis (MIC 16 μg/mL). Following an earlier report of halogenated fluoresceins identified from a combined MraY/MurG screen, three halogenated fluoresceins were tested as inhibitors of E. coli MraY and E. coli MurG, and phloxine B was identified as an inhibitor of E. coli MraY (IC50 32 μM). Molecular docking of inhibitor structures against the structure of Aquifex aeolicus MraY indicates that phloxine B appears to bind to the Mg2+ cofactor in the enzyme active site, while michellamine B binds to a hydrophobic groove formed between transmembrane helices 5 and 9.  相似文献   
69.
The concept of the blood-aqueous barrier is largely based on the use of horseradish peroxidase (HRP). The present investigation was designed to check its reliability as a macromolecular tracer, especially with regard to the transport of plasma proteins. Rabbits were killed 5 min to 24 h after being intravenously injected with HRP. The tracer diffused rapidly, reaching the aqueous humor of the eye in 3 min or less and was detected at high concentration in the narrow space between the outer epithelial layer of the ciliary epithelium and the wall of the pervious capillaries in the stroma of the processes. HRP appeared to migrate from the blood to the posterior chamber, permeating the tight junctions, viz., the anatomical basis of the blood-aqueous barrier. It was detected at higher concentration at the anterior surface of the iris, at short time intervals; this was interpreted as penetration of the tracer from the aqueous humor of the anterior chamber. The choroid was also labeled in continuation with the reaction in the stroma of the pars plana of the ciliary body which, in turn, sometimes reached the iris root. Therefore, the pervious blood vessels of the choroid could be a source of macromolecules for the iris root. HRP also induced the formation of lysosomes in the ciliary epithelium. This can hardly be accepted as the way in which plasma proteins are physiologically transported to the aqueous humor. However, the pathway of HRP migration over short time intervals seems to be in agreement with previous research indicating that the entrance of serum albumin into the posterior chamber is the first step of its incorporation into the aqueous humor. Received: 7 June 1996 / Accepted: 15 January 1997  相似文献   
70.
Han Zhang 《Autophagy》2017,13(3):627-628
Macroautophagy/autophagy is a well-established process involved in maintaining cellular homeostasis, but its role in cancer is complex and even controversial. Many studies have reported a correlative relationship between increased autophagy and evolving cancer cells under stress conditions such as nutrient or oxygen deprivation; however, there has been a lack of a plausible mechanistic link to properly target the autophagy process in the context of this microenvironment. We recently unveiled a positive regulatory loop involving TGM2 (transglutaminase 2)-NFKB/NF-κB signaling, IL6 and autophagy in cancer using mantle cell lymphoma (MCL) as a model system. These pathways are functionally connected to each other, thereby promoting malignant B cell survival and leading to enhanced lymphoma progression both in mice and in patients. Disruption of this network could provide an opportunity to increase the efficacies of current therapies and to reduce MCL drug resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号