首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1904篇
  免费   99篇
  国内免费   98篇
  2023年   23篇
  2022年   21篇
  2021年   56篇
  2020年   43篇
  2019年   57篇
  2018年   56篇
  2017年   38篇
  2016年   32篇
  2015年   58篇
  2014年   106篇
  2013年   135篇
  2012年   81篇
  2011年   95篇
  2010年   64篇
  2009年   93篇
  2008年   104篇
  2007年   93篇
  2006年   93篇
  2005年   97篇
  2004年   91篇
  2003年   82篇
  2002年   71篇
  2001年   62篇
  2000年   34篇
  1999年   39篇
  1998年   29篇
  1997年   37篇
  1996年   25篇
  1995年   34篇
  1994年   23篇
  1993年   24篇
  1992年   19篇
  1991年   26篇
  1990年   16篇
  1989年   13篇
  1988年   13篇
  1987年   15篇
  1986年   8篇
  1985年   13篇
  1984年   12篇
  1983年   11篇
  1982年   12篇
  1981年   10篇
  1980年   8篇
  1979年   9篇
  1978年   4篇
  1977年   2篇
  1976年   5篇
  1975年   2篇
  1974年   4篇
排序方式: 共有2101条查询结果,搜索用时 15 毫秒
51.
Costs of reproduction due to resource allocation trade-offs have long been recognized as key forces in life history evolution, but little is known about their functional or genetic basis. Arabidopsis lyrata, a perennial relative of the annual model plant A. thaliana with a wide climatic distribution, has populations that are strongly diverged in resource allocation. In this study, we evaluated the genetic and functional basis for variation in resource allocation in a reciprocal transplant experiment, using four A. lyrata populations and F2 progeny from a cross between North Carolina (NC) and Norway parents, which had the most divergent resource allocation patterns. Local alleles at quantitative trait loci (QTL) at a North Carolina field site increased reproductive output while reducing vegetative growth. These QTL had little overlap with flowering date QTL. Structural equation models incorporating QTL genotypes and traits indicated that resource allocation differences result primarily from QTL effects on early vegetative growth patterns, with cascading effects on later vegetative and reproductive development. At a Norway field site, North Carolina alleles at some of the same QTL regions reduced survival and reproductive output components, but these effects were not associated with resource allocation trade-offs in the Norway environment. Our results indicate that resource allocation in perennial plants may involve important adaptive mechanisms largely independent of flowering time. Moreover, the contributions of resource allocation QTL to local adaptation appear to result from their effects on developmental timing and its interaction with environmental constraints, and not from simple models of reproductive costs.  相似文献   
52.
For a finite locus model, Markov chain Monte Carlo (MCMC) methods can be used to estimate the conditional mean of genotypic values given phenotypes, which is also known as the best predictor (BP). When computationally feasible, this type of genetic prediction provides an elegant solution to the problem of genetic evaluation under non-additive inheritance, especially for crossbred data. Successful application of MCMC methods for genetic evaluation using finite locus models depends, among other factors, on the number of loci assumed in the model. The effect of the assumed number of loci on evaluations obtained by BP was investigated using data simulated with about 100 loci. For several small pedigrees, genetic evaluations obtained by best linear prediction (BLP) were compared to genetic evaluations obtained by BP. For BLP evaluation, used here as the standard of comparison, only the first and second moments of the joint distribution of the genotypic and phenotypic values must be known. These moments were calculated from the gene frequencies and genotypic effects used in the simulation model. BP evaluation requires the complete distribution to be known. For each model used for BP evaluation, the gene frequencies and genotypic effects, which completely specify the required distribution, were derived such that the genotypic mean, the additive variance, and the dominance variance were the same as in the simulation model. For lowly heritable traits, evaluations obtained by BP under models with up to three loci closely matched the evaluations obtained by BLP for both purebred and crossbred data. For highly heritable traits, models with up to six loci were needed to match the evaluations obtained by BLP.  相似文献   
53.
Abstract

We have completed the first comprehensive transmembrane topology determination for a member of the ubiquitous and important SulP/SLC26 family of coupled anion transporters found in eukaryotes and prokaryotes. The prokaryotic member that we have mapped, namely BicA from Synechococcus PCC7002, is an important Na+-dependent bicarbonate transporter that is likely to play a major role in global primary productivity via the CO2 concentrating mechanism in cyanobacteria. We experimentally determined the topology based on phoA-lacZ topology mapping combined with reference to a range of predictive models based on hydropathy analysis and positive charge distribution. The 12-TMH structure for BicA is characterized by tight turns between several pairs of TMH and it features a prominent cytoplasmically-located STAS domain that is characteristic of the SulP family. A key difference from previous predicted models is that we identify a cytoplasmic loop between helices 8 and 9 where previous models suggested a TMH. This region includes a highly conserved motif that defines the SulP family. The identification of this region as cytoplasmic, rather than transmembrane, has implications for the function and perhaps regulation of SulP family members. This finding is used to reinterpret mutagenesis data relating to highly conserved residues in this region from both plant and human SulP transporters.  相似文献   
54.
55.
Long non‐coding RNAs (LncRNAs) and DNA methylation are important epigenetic mark play a key role in liver fibrosis. Currently, how DNA methylation and LncRNAs control the hepatic stellate cell (HSC) activation and fibrosis has not yet been fully characterized. Here, we explored the role of antisense non‐coding RNA in the INK4 locus (ANRIL) and DNA methylation in HSC activation and fibrosis. The expression levels of DNA methyltransferases 3A (DNMT3A), ANRIL, α‐Smooth muscle actin (α‐SMA), Type I collagen (Col1A1), adenosine monophosphate‐activated protein kinase (AMPK) and p‐AMPK in rat and human liver fibrosis were detected by immunohistochemistry, qRT‐PCR and Western blotting. Liver tissue histomorphology was examined by haematoxylin and eosin (H&E), Sirius red and Masson staining. HSC was transfected with DNMT3A‐siRNA, over‐expressing ANRIL and down‐regulating ANRIL. Moreover, cell proliferation ability was examined by CCK‐8, MTT and cell cycle assay. Here, our study demonstrated that ANRIL was significantly decreased in activated HSC and liver fibrosis tissues, while Col1A1, α‐SMA and DNMT3A were significantly increased in activated HSC and liver fibrosis tissues. Further, we found that down‐regulating DNMT3A expression leads to inhibition of HSC activation. Reduction in DNMT3A elevated ANRIL expression in activated HSC. Furthermore, we performed the over expression ANRIL suppresses HSC activation and AMPK signalling pathways. In sum, our study found that epigenetic DNMT3A silencing of ANRIL enhances liver fibrosis and HSC activation through activating AMPK pathway. Targeting epigenetic modulators DNMT3A and ANRIL, and offer a novel approach for liver fibrosis therapy.  相似文献   
56.
Atherosclerosis is one of the most common and crucial heart diseases involving the heart and brain. At present, atherosclerosis and its major complications comprise the leading causes of death worldwide. Our purpose was to identify the role of ciRS‐7 in atherosclerosis. Tubulogenesis of HMEC‐1 cell was evaluated utilizing tube formation assay. Cell Counting Kit‐8 assay and flow cytometry were utilized to test viability and apoptosis. Migration assay was utilized to determine the migration capacity of experimental cells. Western blot was applied to examine apoptosis and tube formation‐associated protein expression. In addition, the above experiments were repeated when silencing ciRS‐7, overexpressing ciRS‐7, and upregulating miR‐26a‐5p. HMEC‐1 cells formed tube‐like structures over time. Silencing ciRS‐7 suppressed viability, migration, and tube formation but promoted apoptosis. Oppositely, overexpressing ciRS‐7 reversed the effect in HMEC‐1 cells. miR‐26a‐5p expression was elevated by silencing ciRS‐7 and reduced by overexpressing ciRS‐7. Moreover, overexpressing ciRS‐7 facilitated viability, migration, and tube formation via upregulating miR‐26a‐5p. Conclusively, overexpressing ciRS‐7 mobilized phosphoinositide 3‐kinase/protein kinase B (PI3K/AKT) pathway and suppressed c‐Jun N‐terminal kinase (JNK)/p38 pathway. ciRS‐7 exerted influence on apoptosis, viability, migration, and tube formation through mediating PI3K/AKT and JNK/p38 pathways by miR‐26a‐5p downregulation in HMEC‐1 cells.  相似文献   
57.
The pulse of the tree (diurnal cycle of stem radius fluctuations) has been widely studied as a way of analyzing tree responses to the environment, including the phenotypic plasticity of tree–water relationships in particular. However, the genetic basis of this daily phenotype and its interplay with the environment remain largely unexplored. We characterized the genetic and environmental determinants of this response, by monitoring daily stem radius fluctuation (dSRF) on 210 trees from a Eucalyptus urophylla × E. grandis full‐sib family over 2 years. The dSRF signal was broken down into hydraulic capacitance, assessed as the daily amplitude of shrinkage (DA), and net growth, estimated as the change in maximum radius between two consecutive days (ΔR). The environmental determinants of these two traits were clearly different: DA was positively correlated with atmospheric variables relating to water demand, while ΔR was associated with soil water content. The heritability for these two traits ranged from low to moderate over time, revealing a time‐dependent or environment‐dependent complex genetic determinism. We identified 686 and 384 daily quantitative trait loci (QTL) representing 32 and 31 QTL regions for DA and ΔR, respectively. The identification of gene networks underlying the 27 major genomics regions for both traits generated additional hypotheses concerning the biological mechanisms involved in response to water demand and supply. This study highlights that environmentally induced changes in daily stem radius fluctuation are genetically controlled in trees and suggests that these daily responses integrated over time shape the genetic architecture of mature traits.  相似文献   
58.
This study employed the post-real-time PCR application, high resolution melting (HRM) analysis, in order to differentiate between characterised clinical and reference Cryptosporidium parvum samples obtained from Cork University Hospital (Cork, Ireland) and the Cryptosporidium Reference Unit (Swansea, Wales). A sample set composed of 18 distinct C. parvum gp60-subtypes of the IIa gp60-subtype family (an allele family accounting for over 80% of all cryptosporidiosis cases in Ireland) was employed. HRM analysis-based interrogation of the gp60, MM5 and MS9-Mallon tandem repeat loci was found to completely differentiate between 10 of the 18 studied gp60-subtypes. The remaining eight gp60-subtypes were differentiated into three distinct groupings, with the designations within these groupings resolved to two to three potential gp60-subtypes.The current study aimed to develop a novel, reproducible, real-time PCR based multi-locus genotyping method to distinguish between C. parvum gp60-subtypes. These preliminary results support the further expansion of the multi-locus panel in order to increase the discriminatory capabilities of this novel method.  相似文献   
59.
农田土壤镉(Cd)污染日益严重,导致稻米Cd含量超标事件频繁出现,使粮食安全问题备受关注。因此,合理利用Cd污染农田、降低水稻籽粒Cd含量成为亟待解决的问题。籽粒Cd低积累水稻雅恢2816的地上部具有较强的Cd积累能力,研究旨在弄清其地上部Cd积累能力的遗传稳定性,进一步揭示控制该性状的遗传基础,为利用分子标记辅助选育地上部Cd富集能力强、籽粒Cd安全的水稻提供途径。以水稻雅恢2816和3个不同品种水稻分别组配获得的F1为研究对象,分析地上部Cd积累相关性状的杂种优势。进一步以优势组合C268A/雅恢2816构建F2作图群体,对地上部Cd积累相关性状进行QTL定位分析。结果表明:(1) F1地上部Cd积累相关性状杂种优势明显,遗传稳定性强。地上部Cd积累相关性状属数量性状,F2中/超亲分离现象明显。(2)在第4、6号染色体上共挖掘到1个控制水稻地上部生物量和3个控制地上部Cd积累量的QTL位点,分别为qSB-6、qSCdA-4、qSCdA-6-1和qSCdA-6-2,表型贡献率为10.6%—14.4%,且增效等位基因均来自雅恢2816。(3)地上部Cd积累量与地上部生物量、Cd含量,根、糙米的生物量、Cd积累量,根-地上部转移系数均呈极显著正相关,与地上部-籽粒转移系数呈极显著负相关,存在4个QTL集簇区Cl-4-1、Cl-6-1、Cl-6-2和Cl-6-3。(4)区间marker 04171-marker 04197控制着地上部生物量和Cd积累量,与控制糙米Cd含量的QTL不重叠。研究表明:籽粒Cd低积累水稻雅恢2816携带控制地上部Cd高积累的等位基因,可在世代间稳定遗传,QTL位点qSCdA-4、qSCdA-6-1、qSCdA-6-2是控制该性状的重要遗传基础,可为分子标记辅助选育地上部Cd高积累、籽粒Cd低积累水稻提供理论依据。  相似文献   
60.
Reactive oxygen species are toxic byproducts of aerobic respiration that are also important in mediating a diversity of cellular functions. Reactive oxygen species form an important component of plant defenses to inhibit microbial pathogens during pathogen–plant interactions. Tolerance to oxidative stress is likely to make a significant contribution to the viability and pathogenicity of plant pathogens, but the complex network of oxidative stress responses hinders identification of the genes contributing to this trait. Here, we employed a forward genetic approach to investigate the genetic architecture of oxidative stress tolerance in the fungal wheat pathogen Zymoseptoria tritici. We used quantitative trait locus (QTL) mapping of growth and melanization under axenic conditions in two cross-populations to identify genomic regions associated with tolerance to oxidative stress. We found that QTLs associated with growth under oxidative stress as well as inherent growth can affect oxidative stress tolerance, and we identified two uncharacterized genes in a major QTL associated with this trait. Our data suggest that melanization does not affect tolerance to oxidative stress, which differs from what was found for animal pathogens. This study provides a whole-genome perspective on the genetic basis of oxidative stress tolerance in a plant pathogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号