首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1484篇
  免费   105篇
  国内免费   109篇
  2024年   1篇
  2023年   21篇
  2022年   15篇
  2021年   33篇
  2020年   33篇
  2019年   46篇
  2018年   60篇
  2017年   32篇
  2016年   50篇
  2015年   70篇
  2014年   94篇
  2013年   128篇
  2012年   108篇
  2011年   149篇
  2010年   123篇
  2009年   103篇
  2008年   129篇
  2007年   150篇
  2006年   126篇
  2005年   89篇
  2004年   67篇
  2003年   39篇
  2002年   22篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1950年   2篇
排序方式: 共有1698条查询结果,搜索用时 500 毫秒
11.
IMP preferring cytosolic 5 ′-nucleotidase II (cN-II) is a widespread enzyme whose amino acid sequence is highly conserved among vertebrates. Fluctuations of its activity have been reported in some pathological conditions and its mRNA levels have been proposed as a prognostic factor for poor outcome in patients with adult acute myeloid leukemia. As a member of the oxypurine cycle, cN-II is involved in the regulation of intracellular concentration of 5′-inosine monophosphate (IMP), 5′-guanosine monophosphate (GMP), and also 5-phosphoribose 1-pyrophosphate (PRPP) and is therefore involved in the regulation of purine and pyrimidine de novo and salvage synthesis. In addition, several studies demonstrated the involvement of cN-II in pro-drug metabolism. Notwithstanding some publications indicating that cN-II is essential for the survival of several cell types, its role in cell metabolism remains uncertain. To address this issue, we built two eucaryotic cellular models characterized by different cN-II expression levels: a constitutive cN-II knockdown in the astrocytoma cell line (ADF) by short hairpin RNA (shRNA) strategy and a cN-II expression in the diploid strain RS112 of Saccharomyces cerevisiae. Preliminary results suggest that cN-II is essential for cell viability, probably because it is directly involved in the regulation of nucleotide pools. These two experimental approaches could be very useful for the design of a personalized chemotherapy.  相似文献   
12.
The RNA interference (RNAi) phenomenon is a recently observed process in which the introduction of a double-stranded RNA (dsRNA) into cells causes the specific degradation of an mRNA containing the same sequence. To study dsRNA-mediated gene interference targeted to the env gene (NL4-3: 7490-7508) in HIV-1 infected cells, we constructed tandem-type and hairpin-type siRNA expression vectors, which were under the control of two U6 promoters. We also constructed lentiviral-based siRNA expression vectors for further assessment of their antiviral activity in transduced cells. At both the transient plasmid and lentiviral-mediated RNA expression levels, the siRNA encoding the env fragment exhibited sequence-specific suppression of target gene expression and strongly inhibited (≥90%) HIV-1 infection in the cells, as compared to the antisense RNA expression vector. Targeting the HIV-1 env gene with siRNAs encoding the env gene fragment (7490–7508) might be an effective strategy for gene therapy applications in HIV-1/AIDS treatment and management.  相似文献   
13.
We show that the vector-derived long dsRNA specifically inhibits the replication of HCV RNA in HCV replicon. We designed a long dsRNA targeted to the full-length HCV IRES/core elements (1-to 377-nt). Our results revealed that the replication of HCV RNA was reduced to near background levels in a sequence-specific manner by the long dsRNAs in the HCV replicon. We also designed four shRNAs against several regions (120- to 139-nt, 260- to 279-nt, 330- to 349-nt, and 340- to 359-nt) of the HCV IRES/Core elements. The two HCV IRES/core-specific shRNAs, 330- to 349-nt and 340- to 359-nt, containing the AUG initiation codon sequence showed stronger HCV inhibitory effects than the other two shRNAs, 120- to 139-nt and 260- to 279-nt.  相似文献   
14.
Long hairpin RNA (hpRNA) transgenes are a powerful tool for gene function studies in plants, but a genomewide RNAi mutant library using hpRNA transgenes has not been reported for plants. Here, we report the construction of a hpRNA library for the genomewide identification of gene function in rice using an improved rolling circle amplification‐mediated hpRNA (RMHR) method. Transformation of rice with the library resulted in thousands of transgenic lines containing hpRNAs targeting genes of various function. The target mRNA was down‐regulated in the hpRNA lines, and this was correlated with the accumulation of siRNAs corresponding to the double‐stranded arms of the hpRNA. Multiple members of a gene family were simultaneously silenced by hpRNAs derived from a single member, but the degree of such cross‐silencing depended on the level of sequence homology between the members as well as the abundance of matching siRNAs. The silencing of key genes tended to cause a severe phenotype, but these transgenic lines usually survived in the field long enough for phenotypic and molecular analyses to be conducted. Deep sequencing analysis of small RNAs showed that the hpRNA‐derived siRNAs were characteristic of Argonaute‐binding small RNAs. Our results indicate that RNAi mutant library is a high‐efficient approach for genomewide gene identification in plants.  相似文献   
15.
Cottonseed remains a low‐value by‐product of lint production mainly due to the presence of toxic gossypol that makes it unfit for monogastrics. Ultra‐low gossypol cottonseed (ULGCS) lines were developed using RNAi knockdown of δ‐cadinene synthase gene(s) in Gossypium hirsutum. The purpose of the current study was to assess the stability and specificity of the ULGCS trait and evaluate the agronomic performance of the transgenic lines. Trials conducted over a period of 3 years show that the ULGCS trait was stable under field conditions and the foliage/floral organs of transgenic lines contained wild‐type levels of gossypol and related terpenoids. Although it was a relatively small‐scale study, we did not observe any negative effects on either the yield or quality of the fibre and seed in the transgenic lines compared with the nontransgenic parental plants. Compositional analysis was performed on the seeds obtained from plants grown in the field during 2009. As expected, the major difference between the ULGCS and wild‐type cottonseeds was in terms of their gossypol levels. With the exception of oil content, the composition of ULGCS was similar to that of nontransgenic cottonseeds. Interestingly, the ULGCS had significantly higher (4%–8%) oil content compared with the seeds from the nontransgenic parent. Field trial results confirmed the stability and specificity of the ULGCS trait suggesting that this RNAi‐based product has the potential to be commercially viable. Thus, it may be possible to enhance and expand the nutritional utility of the annual cottonseed output to fulfil the ever‐increasing needs of humanity.  相似文献   
16.
17.
18.
As a member of the low-density lipoprotein receptor (LDLR) superfamily, vitellogenin (Vg) receptor (VgR) is responsible for the uptake of Vg into developing oocytes and is a potential target for pest control. Here, a full-length VgR complementary DNA (named as CsVgR) was isolated and characterized in the rice stem borer, Chilo suppressalis. The composite CsVgR gene contained an open reading frame of 5,484 bp encoding a protein of 1,827 amino acid residues. Structural analysis revealed that CsVgR contained two ligand-binding domains (LBDs) with four Class A (LDLRA) repeats in LBD1 and seven in LBD2, which was structurally different from most non-Lepidopteran insect VgRs having five repeats in LBD1 and eight in LBD2. The developmental expression analysis showed that CsVgR messenger RNA expression was first detectable in 3-day-old pupae, sharply increased in newly emerged female adults, and reached a peak in 2-day-old female adults. Consistent with most other insects VgRs, CsVgR was exclusively expressed in the ovary. Notably, injection of dsCsVgR into late pupae resulted in fewer follicles in the ovarioles as well as reduced fecundity, suggesting a critical role of CsVgR in female reproduction. These results may contribute to the development of RNA interference-mediated disruption of reproduction as a control strategy of C. suppressalis.  相似文献   
19.
Bombyx mori nucleopolyhedrovirus (BmNPV) is a primary pathogen in silkworm, and the molecular mechanism of B. mori defense to BmNPV infection is still unclear. RNA interference (RNAi) is well-known as an intracellular conserved mechanism that is critical in gene regulation and cell defense. The antiviral RNAi pathway processes viral double-stranded RNA (dsRNA) into viral small interfering RNAs that guide the recognition and cleavage of complementary viral target RNAs. In this study, a Dicer-2 (Dcr2) gene was identified in B. mori and its antiviral function was explored. Dcr2 messenger RNA (mRNA) expression was the highest in hemocytes and expressed in all stages of silkworm growth. After infection with BmNPV, the expression of Dcr2 mRNA was significantly increased after infection in midgut and hemocytes. The expression of Dcr2 was significantly upregulated by injecting dsRNA (dsBmSPH-1) into silkworm after 48 hr. Knocking down the expression level of Dcr2 using specific dsRNA in silkworm, which modestly enhanced the production of viral genomic DNA. Our results suggested that the Dcr2 gene in B. mori plays an important role in against BmNPV invasion.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号