首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   15篇
  国内免费   14篇
  2023年   11篇
  2022年   5篇
  2021年   8篇
  2020年   11篇
  2019年   10篇
  2018年   8篇
  2017年   7篇
  2016年   5篇
  2015年   6篇
  2014年   12篇
  2013年   14篇
  2012年   8篇
  2011年   13篇
  2010年   10篇
  2009年   9篇
  2008年   11篇
  2007年   7篇
  2006年   9篇
  2005年   7篇
  2004年   5篇
  2003年   7篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1983年   1篇
排序方式: 共有191条查询结果,搜索用时 15 毫秒
61.
为研究结核分枝杆菌Mycobacterium tuberculosis分泌蛋白ESAT-6 (Early secreted antigenic target of 6 kDa) 对巨噬细胞相关功能的影响,将正确构建的重组质粒pEGFP-C1-ESAT-6和空载体pEGFP-C1以脂质体介导的方法转染至小鼠巨噬细胞RAW264.7中,经过G418筛选后建立稳定表达EGFP-ESAT6融合蛋白以及EGFP的细胞系,并通过RT-PCR、荧光显微镜及Western blotting方法,在基因和蛋白两个水平对所建立的稳转细胞系进行鉴定。结果证实EGFP-ESAT6融合基因成功整合入RAW264.7细胞基因组并能够稳定表达,为后续的ESAT-6调控巨噬细胞机理研究提供了平台。  相似文献   
62.
探讨红毛五加多糖(Acanthopanax giraldii Hams polysaccharide)单一组分AHP-Ⅲ(Acanthopanax giraldii Hams polysaccharideⅢ)对小鼠巨噬细胞RAW 264.7的激活作用及机制。不同浓度AHP-Ⅲ作用RAW 264.7细胞,中性红试验检测细胞吞噬能力;ELISA和Griess法检测其IL-6、TNF-α和NO的释放量;RT-qPCR检测iNOS、TNF-α和IL-6 mRNA相对表达水平;Western blot检测NF-κB信号通路相关蛋白磷酸化水平。在实验浓度范围内,AHP-Ⅲ可显著增强RAW 264.7细胞的吞噬能力(P<0.05);促进RAW 264.7分泌NO、TNF-α和IL-6(P<0.05或P<0.001);并显著增加RAW 264.7细胞中IL-6、TNF-α和iNOS mRNA的表达量,呈剂量依赖性;Western blot结果表明,AHP-Ⅲ作用RAW 264.7细胞后,NF-κB中的p65、IKKβ、IκBα磷酸化水平明显升高。结果显示红毛五加多糖AHP-Ⅲ对小鼠巨噬细胞RAW 264.7具有显著激活作用。  相似文献   
63.
Seven new chalcones, lanceolein A–G (compounds 5 and 712), as well as five known chalcones (14 and 6), were isolated from the methanolic extract of Coreopsis lanceolata flowers. The chemical structures of 5 and 712 were determined on the basis of spectroscopic data interpretation. All compounds inhibited the production of nitrite oxide (NO) induced by LPS in RAW264.7 macrophage cells. Also, compounds 16 showed moderated cytotoxicity against human colon cancer cell lines, while compounds 712 hardly showed the cytotoxicity. Especially, compounds 2, 5, and 6 exhibited a little higher cytotoxicity on HCT15 cells, with IC50 values of 43.7 ± 2.17 μM, 35.6 ± 0.24 μM, and 47.9 ± 1.18 μM, respectively. In the Tali assay, compounds 2 and 5 increased the numeral of apoptotic cells. These compounds also significantly promoted the expression of apoptotic proteins including PARP and caspase-3.  相似文献   
64.
65.

Background

Despite Cryptostegia grandiflora Roxb. ex R. Br. (Apocynaceae) leaves are widely used in folk Caribbean Colombian medicine for their anti-inflammatory effects, there are no studies that support this traditional use. Therefore, this work aimed to evaluate the effect of the total extract and primary fractions obtained from Cryptostegia grandiflora leaves, using in vivo and in vitro models of inflammation, and further get new insights on the mechanisms involved in this activity.

Results

Ethanolic extract of Cryptostegia grandiflora leaves, and its corresponding ether and dichloromethane fractions, significantly reduced inflammation and myeloperoxidase activity (MPO) in ear tissue of mice treated with 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Histological analysis revealed a reduction of edema and leukocyte infiltration. Complementarily, we demonstrated that extract and fractions reduced nitric oxide (NO•) and prostaglandin E2 (PGE2) production in LPS-stimulated RAW 264.7 macrophages, as well as scavenging activity on DPPH and ABTS radicals.

Conclusions

Our results demonstrated for the first time the anti-inflammatory activity of Cryptostegia grandiflora leaves, supporting its traditional use. This activity was related to inhibition of MPO activity, and PGE2 and NO• production. These mechanisms and its antioxidant activity could contribute, at least in part, to the anti-inflammatory effect showed by this plant.  相似文献   
66.
Phosphorylation of high mobility group box 1 (HMGB1) is involved in the subcellular translocation of this protein and its subsequent secretion. Two nuclear localization signals (NLSs), NLS1 and NLS2, in this protein regulate its nucleocytoplasmic relocation, and phosphorylation of both NLSs strongly promotes HMGB1 mobilization. However, the phosphorylation properties of serine residues in NLS1 and the kinases involved are not well known. In the present study, we predicted kinases that phosphorylate serine residues in NLS1 and performed an in vitro kinase assay utilizing NLS1‐derived phosphopeptides. Among the predicted kinases, protein kinase C phosphorylated Ser46 of HMGB1‐derived peptides, and a mutagenesis experiment confirmed that phosphorylation at this site could induce the translocation of the N‐terminal region of NLS1‐containing HMGB1 into the cytosol. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
67.
《Phytomedicine》2014,21(6):830-837
The aim of the study was to investigate the anti-rheumatoid arthritic activity of four flavonoids from Daphne genkwa (FFD) in vivo and in vitro. Flavonoids of D. genkwa were extracted by refluxing with ethanol and purified by polyamide resin. An in vivo carrageenan-induced paw edema model, tampon-granuloma model and Freund's complete adjuvant (FCA)-induced arthritis mouse model were used to evaluate the anti-rheumatoid arthritic activities of FFD. Moreover, nitric oxide (NO) release and neutral red uptake (NRU) in lipopolysaccharide (LPS)-induced murine macrophage RAW264.7 cells were used to evaluate the anti-inflammatory effect in vitro. In addition, antioxidant effect of FFD was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. A high dose of FFD significantly reduced the degree of acute inflammatory paw edema in mice as a response to carrageenan administration (p < 0.01). FFD displayed a dose-dependent inhibition of granuloma formation in mice (p < 0.05). FFD also inhibited chronic inflammation in adjuvant-induced arthritis rats when administered orally at the dose of 50 mg/kg/day (p < 0.001). In addition, FFD suppressed the production of NO and exhibited immunoregulatory function in LPS-activated RAW264.7 cells in a dose-related manner. Simultaneously, FFD revealed conspicuous antioxidant activity with IC50 values of 18.20 μg/ml. FFD possesses significant anti-inflammatory and antioxidant activity, which could be a potential therapeutic agent for chronic inflammatory disorders such as rheumatoid arthritis.  相似文献   
68.
Macrophages are key phagocytic innate immune cells. When macrophages encounter a pathogen, they produce antimicrobial proteins and compounds to kill the pathogen, produce various cytokines and chemokines to recruit and stimulate other immune cells, and present antigens to stimulate the adaptive immune response. Thus, being able to efficiently manipulate macrophages with techniques such as RNA-interference (RNAi) is critical to our ability to investigate this important innate immune cell. However, macrophages can be technically challenging to transfect and can exhibit inefficient RNAi-induced gene knockdown. In this protocol, we describe methods to efficiently transfect two mouse macrophage cell lines (RAW264.7 and J774A.1) with siRNA using the Amaxa Nucleofector 96-well Shuttle System and describe procedures to maximize the effect of siRNA on gene knockdown. Moreover, the described methods are adapted to work in 96-well format, allowing for medium and high-throughput studies. To demonstrate the utility of this approach, we describe experiments that utilize RNAi to inhibit genes that regulate lipopolysaccharide (LPS)-induced cytokine production.  相似文献   
69.
肠道菌群代谢产物氧化三甲胺(trimethylamine N-oxide,TMAO)可通过多种途径促进动脉粥样硬化(atherosclerosis,AS)的进展,现研究发现,在临床上其与斑块稳定性存在密切联系,但其分子机制目前尚不明确.金属蛋白酶诱导因子(extracellular matrix metalloprot...  相似文献   
70.
Chemically modified tetracyclines (CMTs 1-10) were developed as non-antibiotic inhibitors of matrix metalloproteinases (MMPs). We previously demonstrated that MMP inhibition alone is insufficient to explain the pro-apoptotic action of CMTs in osteoclast lineage cells and we have explored additional mechanisms of action. We compared the characteristics of apoptosis in RAW264.7 murine monocyte and osteoclast cultures treated with pharmacologically relevant concentrations of CMT3 or the bisphosphonate alendronate, which induces osteoclast apoptosis through inhibition of farnesyl diphosphate synthase. CMT3 induced apoptosis rapidly (2-3 h), whereas alendronate-induced apoptosis was delayed (>12 h). CMT3-treated cells did not accumulate unprenylated Rap1A in contrast to cells treated with alendronate. Importantly, CMT3 induced a rapid loss of mitochondrial stability in RAW264.7 cells measured by loss of Mitotracker® Red fluorescence, while bongkrekic acid protected polykaryons from CMT3-induced apoptosis. Modulation of mitochondrial function is therefore a significant early action of CMT3 that promotes apoptosis in osteoclast lineage cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号