首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   9篇
  国内免费   3篇
  2023年   1篇
  2022年   6篇
  2021年   13篇
  2020年   5篇
  2019年   16篇
  2018年   13篇
  2017年   5篇
  2016年   7篇
  2015年   8篇
  2014年   19篇
  2013年   22篇
  2012年   12篇
  2011年   11篇
  2010年   4篇
  2009年   4篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   3篇
  1975年   1篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
101.
The clinical success of ALK targeted therapy is limited by resistance. To identify rational co-targeting strategies to enhance clinical outcomes, we explored the molecular basis of ALK oncogene dependence in ALK gene rearrangement positive (ALK+) lung adenocarcinoma. We discovered that the RAS-RAF-MEK-ERK pathway is the critical downstream pathway necessary for ALK+ tumor cell survival. Upfront co-targeting of ALK plus MEK enhanced response and forestalled resistance in preclinical ALK+ tumor models, providing rationale for a new approach the treatment of ALK+ patients.  相似文献   
102.
RAB proteins, which belong to the RAS superfamily, regulate exocytic and endocytic pathways of eukaryotic cells, controlling vesicle docking and fusion. Few RAB proteins have been identified in parasites. Molecular markers for cellular compartments are important to studies concerning about the protein traffic in Trypanosoma cruzi, the causal agent of Chagas disease. In this work, we describe the characterization of TcRABL4, the first RAB-like gene identified in T. cruzi (GenBank Accession No.: ), present as a single-copy gene. TcRABL4 contains all five consensus RAB motifs but lacks cysteine residues at the C terminus, which are essential to isoprenylation, an absolute prerequisite for membrane association of these proteins. TcRABL4 is a functional GTPase that is able to bind and hydrolyze GTP, and its gene is transcribed as a single 1.2 kb mRNA in epimastigotes. TcRABL4 appears to be differentially regulated in the three cell forms of the parasite, and the protein is not associated to membranes, unlike other RAB proteins. It is possible that TcRABL4 may be a member of a novel family of small GTPases.  相似文献   
103.
104.
Activating mutations of RAS GTPase contribute to the progression of many cancers, including colorectal carcinoma. So far, attempts to develop treatments of mutant RAS-carrying cancers have been unsuccessful due to insufficient understanding of the salient mechanisms of RAS signaling. We found that RAS downregulates the protein ATG12 in colon cancer cells. ATG12 is a mediator of autophagy, a process of degradation and reutilization of cellular components. In addition, ATG12 can kill cells via autophagy-independent mechanisms. We established that RAS reduces ATG12 levels in cancer cells by accelerating its proteasomal degradation. We further observed that RAS-dependent ATG12 loss in these cells is mediated by protein kinases MAP2K/MEK and MAPK1/ERK2-MAPK3/ERK1, known effectors of RAS. We also demonstrated that the reversal of the effect of RAS on ATG12 achieved by the expression of exogenous ATG12 in cancer cells triggers both apoptotic and nonapoptotic signals and efficiently kills the cells. ATG12 is known to promote autophagy by forming covalent complexes with other autophagy mediators, such as ATG5. We found that the ability of ATG12 to kill oncogenic RAS-carrying malignant cells does not require covalent binding of ATG12 to other proteins. In summary, we have identified a novel mechanism by which oncogenic RAS promotes survival of malignant intestinal epithelial cells. This mechanism is driven by RAS-dependent loss of ATG12 in these cells.  相似文献   
105.
L. Dard  N. Bellance  D. Lacombe  R. Rossignol 《BBA》2018,1859(9):845-867
The RAS pathway is a highly conserved cascade of protein-protein interactions and phosphorylation that is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Recent findings indicate that the RAS pathway plays a role in the regulation of energy metabolism via the control of mitochondrial form and function but little is known on the participation of this effect in RAS-related rare human genetic diseases. Germline mutations that hyperactivate the RAS pathway have been discovered and linked to human developmental disorders that are known as RASopathies. Individuals with RASopathies, which are estimated to affect approximately 1/1000 human birth, share many overlapping characteristics, including cardiac malformations, short stature, neurocognitive impairment, craniofacial dysmorphy, cutaneous, musculoskeletal, and ocular abnormalities, hypotonia and a predisposition to developing cancer. Since the identification of the first RASopathy, type 1 neurofibromatosis (NF1), which is caused by the inactivation of neurofibromin 1, several other syndromes have been associated with mutations in the core components of the RAS-MAPK pathway. These syndromes include Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML), which was formerly called LEOPARD syndrome, Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS) and capillary malformation–arteriovenous malformation syndrome (CM-AVM). Here, we review current knowledge about the bioenergetics of the RASopathies and discuss the molecular control of energy homeostasis and mitochondrial physiology by the RAS pathway.  相似文献   
106.
In the wake of the success of aerobic granulation in sequential batch reactors (SBRs) for treating wastewater, attention is beginning to turn to continuous flow applications. This is a necessary step given the advantages of continuous flow treatment processes and the fact that the majority of full-scale wastewater treatment plants across the world are operated with aeration tanks and clarifiers in a continuous flow mode. As in SBRs, applying a selection pressure, based on differences in either settling velocity or the size of the biomass, is essential for successful granulation in continuous flow reactors (CFRs). CFRs employed for aerobic granulation come in multiple configurations, each with their own means of achieving such a selection pressure. Other factors, such as bioaugmentation and hydraulic shear force, also contribute to aerobic granulation to some extent. Besides the formation of aerobic granules, long-term stability of aerobic granules is also a critical issue to be addressed. Inorganic precipitation, special inocula, and various operational optimization strategies have been used to improve granule long-term structural integrity. Accumulated studies reviewed in this work demonstrate that aerobic granulation in CFRs is capable of removing a wide spectrum of contaminants and achieving properties generally comparable to those in SBRs. Despite the notable research progress made toward successful aerobic granulation in lab-scale CFRs, to the best of our knowledge, there are only three full-scale tests of the technique, two being seeded with anammox-supported aerobic granules and the other with conventional aerobic granules; two other process alternatives are currently in development. Application of settling- or size-based selection pressures and feast/famine conditions are especially difficult to implement to these and similar mainstream systems. Future research efforts needs to be focused on the optimization of the granule-to-floc ratio, enhancement of granule activity, improvement of long-term granule stability, and a better understanding of aerobic granulation mechanisms in CFRs, especially in full-scale applications.  相似文献   
107.
ERK5, encoded by MAPK7, has been proposed to play a role in cell proliferation, thus attracting interest as a cancer therapeutic target. While oncogenic RAS or BRAF cause sustained activation of the MEK1/2-ERK1/2 pathway, ERK5 is directly activated by MEK5. It has been proposed that RAS and RAF proteins can also promote ERK5 activation. Here we investigated the interplay between RAS-RAF-MEK-ERK and ERK5 signaling and studied the role of ERK5 in tumor cell proliferation in 2 disease-relevant cell models. We demonstrate that although an inducible form of CRAF (CRAF:ER*) can activate ERK5 in fibroblasts, the response is delayed and reflects feed-forward signaling. Additionally, oncogenic KRAS and BRAF do not activate ERK5 in epithelial cells. Although KRAS and BRAF do not couple directly to MEK5-ERK5, ERK5 signaling might still be permissive for proliferation. However, neither the selective MEK5 inhibitor BIX02189 or ERK5 siRNA inhibited proliferation of colorectal cancer cells harbouring KRASG12C/G13D or BRAFV600E. Furthermore, there was no additive or synergistic effect observed when BIX02189 was combined with the MEK1/2 inhibitor Selumetinib (AZD6244), suggesting that ERK5 was neither required for proliferation nor a driver of innate resistance to MEK1/2 inhibitors. Finally, even cancer cells with MAPK7 amplification were resistant to BIX02189 and ERK5 siRNA, showing that ERK5 amplification does not confer addiction to ERK5 for cell proliferation. Thus ERK5 signaling is unlikely to play a role in tumor cell proliferation downstream of KRAS or BRAF or in tumor cells with ERK5 amplification. These results have important implications for the role of ERK5 as an anti-cancer drug target.  相似文献   
108.
The yeast Saccharomyces cerevisiae is mortal. Before they die, individual yeasts bud repeatedly producing a finite number of progeny, which have the capacity for a full life span. A feature of aging in many species is the waning of resistance to stress. To determine whether this is the case in yeast, we have examined the survival (viability) of age-synchronized populations of yeasts of various ages, spanning youth, midlife, and old age, after irradiation with ultraviolet light (UV). Resistance to UV was biphasic. There was an increase through midlife, followed by a precipitous decline. For comparison, another mutagenic agent, ethyl methanesulfonate (EMS), was tested in the same way. The response was very different. A uniphase decrease in resistance to this DNA-alkylating agent was found with a plateau later in life. The results argue that the increase in resistance to UV with age is an active process and not simply a monotonic age change. RAS2 is among the genes that determine yeast longevity. This gene is preferentially expressed in young cells and has a life span-extending effect on yeasts. One known function of RAS2 is to mount a protective response to irradiation by UV, which occurs independently of DNA damage. The distinction between UV and EMS found here is consistent with the notion that resistance to UV plays a role in yeast longevity in a manner not related to DNA damage. Furthermore, it suggests that RAS2 may participate in this response. We have found that RAS2 expression and UV resistance coincide in middle-aged yeasts bolstering this possibility. These data and the eclipse in activity of several longevity determining genes at midlife in yeasts also raise the possibility that active life maintenance processes function through this period, after which the organism operates on any remaining reserves until death. © 1996 Wiley-Liss, Inc.  相似文献   
109.
110.
This study was aimed at evaluating the physiological and metabolic responses of juvenile hybrid grouper ♀ Epinephelus fuscoguttatus × ♂ Epinephelus lanceolatus to stocking density. Hybrid grouper juveniles (mean ± SE = 25.43 ± 2.36 g live mass) were stocked for 22 weeks in a recirculating aquaculture system (RAS) under four different densities: low stocking density (LD; 1.03 kg m−3), medium stocking density (MD; 2.06 kg m−3), high stocking density (HD; 3.09 kg m−3) and extra-high stocking density (EHD; 4.11 kg m−3). Biometric variables were recorded and plasma, liver, intestine and stomach samples were taken for biochemical analysis at the end of the experimental period. Final stocking densities were 6.27, 16.04, 23.77 and 28.32 kg m−3, respectively, with significant differences in growth performance. Our results showed that the best growth rates and feed utilisation occurred in the MD group. Higher plasma cortisol and glucose levels and lower triglyceride levels reflected the stress responses in the EHD group. Moreover, the activity of aspartate and alanine transaminases was elevated in the HD and EHD groups due to enhanced gluconeogenesis. The activity of the digestive enzyme pepsin significantly increased in the MD group. We found that 2.06–3.09 kg m−3 is the most suitable starting density for culturing juvenile hybrid grouper in recirculating aquaculture systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号