首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   5篇
  2023年   1篇
  2021年   2篇
  2020年   6篇
  2019年   10篇
  2018年   9篇
  2017年   3篇
  2016年   3篇
  2015年   8篇
  2014年   17篇
  2013年   11篇
  2012年   12篇
  2011年   12篇
  2010年   10篇
  2009年   9篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
排序方式: 共有138条查询结果,搜索用时 515 毫秒
131.
S100 proteins, a multigenic family of calcium-binding proteins, have been linked to human pathologies in recent years. Deregulated expression of S100 proteins, including S100A8 and S100A9, was reported in association with neoplastic disorders. In a previous study, we identified enhanced expression of S100A8 and S100A9 in human prostate cancer. To investigate potential functional implications of S100A8 and S100A9 in prostate cancer, we examined the influence of over-expressed and of purified recombinant S100A8 and S100A9 proteins in different prostate epithelial cell lines. S100A8 and S100A9 were secreted by prostate cancer cells, a finding which prompted us to analyze a possible function as extracellular ligands. S100A8/A9 induced the activation of NF-kappaB and an increased phosphorylation of p38 and p44/42 MAP kinases. In addition, extracellular S100A8/A9 stimulated migration of benign prostatic cells in vitro. Furthermore, in immunofluorescence experiments, we found a strong speckled co-localization of intracellular S100A8/A9 with RAGE after stimulating cells with recombinant S100A8/A9 protein or by increasing cytosolic Ca2+ levels. In summary, our findings show that S100A8 and S100A9 are linked to the activation of important features of prostate cancer cells.  相似文献   
132.
Introduction: The consequences of chronic disease are vast and unremitting; hence, understanding the pathogenic mechanisms mediating such disorders holds promise to identify therapeutics and diminish the consequences. The ligands of the receptor for advanced glycation end products (RAGE) accumulate in chronic diseases, particularly those characterized by inflammation and metabolic dysfunction. Although first discovered and reported as a receptor for advanced glycation end products (AGEs), the expansion of the repertoire of RAGE ligands implicates the receptor in diverse milieus, such as autoimmunity, chronic inflammation, obesity, diabetes, and neurodegeneration.

Areas covered: This review summarizes current knowledge regarding the ligand families of RAGE and data from human subjects and animal models on the role of the RAGE axis in chronic diseases. The recent discovery that the cytoplasmic domain of RAGE binds to the formin homology 1 (FH1) domain, DIAPH1, and that this interaction is essential for RAGE ligand-stimulated signal transduction, is discussed. Finally, we review therapeutic opportunities targeting the RAGE axis as a means to mitigate chronic diseases.

Expert commentary: With the aging of the population and the epidemic of cardiometabolic disease, therapeutic strategies to target molecular pathways that contribute to the sequelae of these chronic diseases are urgently needed. In this review, we propose that the ligand/RAGE axis and its signaling nexus is a key factor in the pathogenesis of chronic disease and that therapeutic interruption of this pathway may improve quality and duration of life.  相似文献   

133.
BackgroundSLC30A10 and RAGE are widely recognized as pivotal regulators of Aβ plaque transport and accumulation. Prior investigations have established a link between early lead exposure and cerebral harm in offspring, attributable to Aβ buildup and amyloid plaque deposition. However, the impact of lead on the protein expression of SLC30A10 and RAGE has yet to be elucidated. This study seeks to confirm the influence of maternal lead exposure during pregnancy, specifically through lead-containing drinking water, on the protein expression of SLC30A10 and RAGE in mice offspring. Furthermore, this research aims to provide further evidence of lead-induced neurotoxicity.MethodsFour cohorts of mice were subjected to lead exposure at concentrations of 0 mM, 0.25 mM, 0.5 mM, and 1 mM over a period of 42 uninterrupted days, spanning from pregnancy to the weaning phase. On postnatal day 21, the offspring mice underwent assessments. The levels of lead in the blood, hippocampus, and cerebral cortex were scrutinized, while the mice's cognitive abilities pertaining to learning and memory were probed through the utilization of the Morris water maze. Furthermore, Western blotting and immunofluorescence techniques were employed to analyze the expression levels of SLC30A10 and RAGE in the hippocampus and cerebral cortex.ResultsThe findings revealed a significant elevation in lead concentration within the brains and bloodstreams of mice, mirroring the increased lead exposure experienced by their mothers during the designated period (P < 0.05). Notably, in the Morris water maze assessment, the lead-exposed group exhibited noticeably diminished spatial memory compared to the control group (P < 0.05). Both immunofluorescence and Western blot analyses effectively demonstrated the concomitant impact of varying lead exposure levels on the hippocampal and cerebral cortex regions of the offspring. The expression levels of SLC30A10 displayed a negative correlation with lead doses (P < 0.05). Surprisingly, under identical circumstances, the expression of RAGE in the hippocampus and cortex of the offspring exhibited a positive correlation with lead doses (P < 0.05).ConclusionSLC30A10 potentially exerts distinct influence on exacerbated Aβ accumulation and transportation in contrast to RAGE. Disparities in brain expression of RAGE and SLC30A10 may contribute to the neurotoxic effects induced by lead.  相似文献   
134.
Recent studies have suggested that the receptor for advanced glycation end products (RAGE) participates in melanoma progression by promoting tumor growth. However, the mechanisms of RAGE activation in melanoma tumors are not clearly understood. To get deeper insights into these mechanisms, we transfected a melanoma cell line, which was established from a human melanoma primary tumor, with RAGE, and studied the effect of RAGE overexpression on cell proliferation and migration in vitro. We observed that overexpression of RAGE in these cells not only resulted in significantly increased migration rates compared to control cells, but also in decreased proliferation rates (Meghnani et al., 2014).In the present study, we compared the growth of xenograft tumors established from RAGE overexpressing WM115 cells, to that of control cells. We observed that when implanted in mice, RAGE overexpressing cells generated tumors faster than control cells. Analysis of protein tumor extracts showed increased levels of the RAGE ligands S100B, S100A2, S100A4, S100A6 and S100A10 in RAGE overexpressing tumors compared to control tumors. We show that the tumor growth was significantly reduced when the mice were treated with anti-RAGE antibodies, suggesting that RAGE, and probably several S100 proteins, were involved in tumor growth. We further demonstrate that the anti-RAGE antibody treatment significantly enhanced the efficacy of the alkylating drug dacarbazine in reducing the growth rate of RAGE overexpressing tumors.  相似文献   
135.
Diabetes results in increased fracture risk, and advance glycation endproducts (AGEs) have been implicated in this pathophysiology. S100 proteins are ligands for the receptor of AGEs (RAGE). An intracellular role of the S100 family member S100A4 (Mts1) to suppress mineralization has been described in pre‐osteoblastic MC3T3‐E1 cells. However, S100 proteins could have additional effects on bone. The goal of the current study was to determine effects of increased extracellular S100 on osteoclastogenesis. We first determined the direct effects of S100 on pre‐osteoclast proliferation and osteoclastic differentiation. RANKL‐treated RAW 264.7 cell proliferation and TRAP activity were significantly inhibited by S100, and the number and size of TRAP‐positive multinucleated cells were decreased. We then determined whether S100 could affect osteoclastogenesis by an indirect process by examining effects of conditioned media from S100‐treated MC3T3‐E1 cells on osteoclastogenesis. In contrast to the direct inhibitory effect of S100, the conditioned media promoted RAW 264.7 cell proliferation and TRAP activity, with a trend toward increased TRAP‐positive multinucleated cells. S100 treatment of the MC3T3‐E1 cells for 14 days did not significantly affect alkaline phosphatase, M‐CSF, or OPG gene expression. RANKL was undetectable in both untreated and treated cells. The treatment slightly decreased MC3T3‐E1 cell proliferation. Interestingly, S100 treatment increased expression of RAGE by the MC3T3‐E1 cells. This suggested the possibility that S100 could increase soluble RAGE, which acts as a decoy receptor for S100. This decrease in availability of S100, an inhibitor of pre‐osteoclast proliferation, could contribute to osteoclastogenesis, ultimately resulting in increased bone resorption. J. Cell. Biochem. 107: 917–925, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
136.
Teresa Monkkonen 《Autophagy》2018,14(2):190-198
Tumor-associated inflammation is predictive of poor prognosis and drives a variety of tumorigenic phenotypes, including tumor proliferation and survival, angiogenesis, invasiveness, and metastasis. Here, we review mammalian data addressing the interaction of macroautophagy/autophagy with key signaling cascades associated with tumor inflammation. Although our understanding of this area remains incomplete, certain inflammatory pathways have emerged as important mediators of the crosstalk between autophagy and inflammation in tumors. Consistent with the multifaceted roles for autophagy in tumor cells, results to date support the hypothesis that inflammatory pathways can suppress or induce autophagy in a context-dependent manner; in turn, autophagy suppresses or promotes inflammation in cancers. Furthermore, emerging data suggest that autophagy may influence cytokine production and secretion via diverse mechanisms, which has implications for the immune and inflammatory microenvironment in tumors.  相似文献   
137.
138.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号