首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1744篇
  免费   177篇
  国内免费   86篇
  2023年   28篇
  2022年   34篇
  2021年   56篇
  2020年   63篇
  2019年   63篇
  2018年   54篇
  2017年   71篇
  2016年   58篇
  2015年   63篇
  2014年   103篇
  2013年   128篇
  2012年   50篇
  2011年   100篇
  2010年   81篇
  2009年   78篇
  2008年   99篇
  2007年   97篇
  2006年   81篇
  2005年   67篇
  2004年   65篇
  2003年   63篇
  2002年   47篇
  2001年   41篇
  2000年   31篇
  1999年   38篇
  1998年   20篇
  1997年   20篇
  1996年   34篇
  1995年   21篇
  1994年   23篇
  1993年   20篇
  1992年   26篇
  1991年   19篇
  1990年   13篇
  1989年   7篇
  1988年   10篇
  1987年   7篇
  1986年   14篇
  1985年   11篇
  1984年   19篇
  1983年   10篇
  1982年   22篇
  1981年   15篇
  1980年   13篇
  1979年   9篇
  1978年   4篇
  1977年   2篇
  1975年   1篇
  1973年   5篇
  1971年   1篇
排序方式: 共有2007条查询结果,搜索用时 15 毫秒
81.
Nodose ganglia are composed of A-, Ah- and C-type neurons. Despite their important roles in regulating visceral afferent function, including cardiovascular, pulmonary, and gastrointestinal homeostasis, information about subtype-specific expression, molecular identity, and function of individual ion transporting proteins is scarce. Although experiments utilizing the sliced ganglion preparation have provided valuable insights into the electrophysiological properties of nodose ganglion neuron subtypes, detailed characterization of their electrical phenotypes will require measurements in isolated cells. One major unresolved problem, however, is the difficulty to unambiguously identify the subtype of isolated nodose ganglion neurons without current-clamp recording, because the magnitude of conduction velocity in the corresponding afferent fiber, a reliable marker to discriminate subtypes in situ, can no longer be determined. Here, we present data supporting the notion that application of an algorithm regarding to microscopic structural characteristics, such as neuron shape evaluated by the ratio between shortest and longest axis, neuron surface characteristics, like membrane roughness, and axon attachment, enables specific and sensitive subtype identification of acutely dissociated rat nodose ganglion neurons, by which the accuracy of identification is further validated by electrophysiological markers and overall positive predictive rates is 89.26% (90.04%, 76.47%, and 98.21% for A-, Ah, and C-type, respectively). This approach should aid in gaining insight into the molecular correlates underlying phenotypic heterogeneity of nodose ganglia. Additionally, several critical points that help for neuron identification and afferent conduction calibration are also discussed.  相似文献   
82.
Surface acoustic waves (SAWs) can be used to drive liquids in portable microfluidic chips via the acoustic counterflow phenomenon. In this video we present the fabrication protocol for a multilayered SAW acoustic counterflow device. The device is fabricated starting from a lithium niobate (LN) substrate onto which two interdigital transducers (IDTs) and appropriate markers are patterned. A polydimethylsiloxane (PDMS) channel cast on an SU8 master mold is finally bonded on the patterned substrate. Following the fabrication procedure, we show the techniques that allow the characterization and operation of the acoustic counterflow device in order to pump fluids through the PDMS channel grid. We finally present the procedure to visualize liquid flow in the channels. The protocol is used to show on-chip fluid pumping under different flow regimes such as laminar flow and more complicated dynamics characterized by vortices and particle accumulation domains.  相似文献   
83.
Intercellular communication is essential for the coordination of physiological processes between cells in a variety of organs and tissues, including the brain, liver, retina, cochlea and vasculature. In experimental settings, intercellular Ca2+-waves can be elicited by applying a mechanical stimulus to a single cell. This leads to the release of the intracellular signaling molecules IP3 and Ca2+ that initiate the propagation of the Ca2+-wave concentrically from the mechanically stimulated cell to the neighboring cells. The main molecular pathways that control intercellular Ca2+-wave propagation are provided by gap junction channels through the direct transfer of IP3 and by hemichannels through the release of ATP. Identification and characterization of the properties and regulation of different connexin and pannexin isoforms as gap junction channels and hemichannels are allowed by the quantification of the spread of the intercellular Ca2+-wave, siRNA, and the use of inhibitors of gap junction channels and hemichannels. Here, we describe a method to measure intercellular Ca2+-wave in monolayers of primary corneal endothelial cells loaded with Fluo4-AM in response to a controlled and localized mechanical stimulus provoked by an acute, short-lasting deformation of the cell as a result of touching the cell membrane with a micromanipulator-controlled glass micropipette with a tip diameter of less than 1 μm. We also describe the isolation of primary bovine corneal endothelial cells and its use as model system to assess Cx43-hemichannel activity as the driven force for intercellular Ca2+-waves through the release of ATP. Finally, we discuss the use, advantages, limitations and alternatives of this method in the context of gap junction channel and hemichannel research.  相似文献   
84.
In this review, we summarise recent studies that purposefully employed dynamic conditions, such as shifts, pulses, ramps and oscillations, for fast physiological strain characterisation and bioprocess development. We show the broad applicability of dynamic conditions and the various objectives that can thereby be investigated in a short time. Dynamic processes reveal information about the analysed system faster than traditional strategies, like continuous cultivations, as process parameters can directly be linked to platform and product parameters. Furthermore, we demonstrate that dynamic operations can result in increased productivity and high product quality, making this strategy a valuable tool for bioprocess development. With this review, we would like to encourage bioprocess engineers to an increased use of dynamic conditions in bioprocess development.  相似文献   
85.
We show that the chemotactic movements of colonies of the starving amoeba Dictyostelium discoideum are driven by a force that depends on both the direction of propagation (directional sensing) of reaction-diffusion chemotactic waves and on the gradient of the concentration of the chemoattractant, solving the chemotactic wave paradox. It is shown that the directional sensing of amoebae is due to the sensitivity of the cells to the time variation of the concentration of the chemoattractant combined with its spatial gradient. It is also shown that chemotaxis exclusively driven by local concentration gradient leads to unstable local motion, preventing cells from aggregation. These findings show that the formation of mounds, which initiate multicellularity in Dictyostelium discoideum, is caused by the sensitivity of the amoebae due to three factors, namely, to the direction of propagation of the chemoattractant, to its spatial gradient, and to the emergence of cAMP “emitting centres”, responsible for the local accumulation of the amoebae.  相似文献   
86.
Predicting fluid responsiveness, the response of stroke volume to fluid loading, is a relatively novel concept that aims to optimise circulation, and as such organ perfusion, while avoiding futile and potentially deleterious fluid administrations in critically ill patients. Dynamic parameters have shown to be superior in predicting the response to fluid loading compared with static cardiac filling pressures. However, in routine clinical practice the conditions necessary for dynamic parameters to predict fluid responsiveness are frequently not met. Passive leg raising as a means to alter biventricular preload in combination with subsequent measurement of the change in stroke volume can provide a fast and accurate way to guide fluid management in a broad population of critically ill patients.  相似文献   
87.
The adaptation of insects to environmental changes can constitute a crucial factor in their development and activity. The response of Cabera pusaria L. (Lepidoptera: Geometridae) caterpillars to high manganese (Mn) concentrations in the diet was studied. Birch leaves were treated by dipping in MnCl2·4H2O solutions, thereby achieving Mn contents of 370 (T0), 695 (T1), 3 198 (T2), and 6 302 mg kg−1 (T3). The reactions were determined by observing caterpillar mortality, development time, food consumption, and pupal weight. Manganese concentrations in larval excrement, pupae, and food were determined. Manganese in the diet at unnaturally increased concentrations caused great stress for caterpillars. All individuals in the treatment with the highest Mn concentration (T3) died during rearing and successful pupation occurred in only four individuals in T2. Even in the case of caterpillars from T1 (twofold higher than T0) a negative reaction (increased food consumption and prolonged development) was recorded. We also determined significantly increased Mn concentration in pupae from T1 (T2 and T3 were not included in this evaluation due to mortality) and excrement (T1‒T3) compared with T0 having a natural Mn concentration. Caterpillars were seen to eliminate negatively acting dietary Mn by its translocation to excrement. However, the highest mortality rate in T2 and T3 and negative reactions of individuals in T1 very likely demonstrate energy insufficiency and the high energy requirements of Mn elimination mechanisms.  相似文献   
88.

Background

Starch is a main source of carbohydrate in human diets, but differences are observed in postprandial glycaemia following ingestion of different foods containing identical starch contents. Such differences reflect variations in rates at which different starches are digested in the intestine. In seeking explanations for these differences, we have studied the interaction of α-amylase with starch granules. Understanding this key step in digestion should help with a molecular understanding for observed differences in starch digestion rates.

Methods

For enzymes acting upon solid substrates, a Freundlich equation relates reaction rate to enzyme adsorption at the surface. The Freundlich exponent (n) equals 2/3 for a liquid-smooth surface interface, 1/3 for adsorption to exposed edges of ordered structures and 1.0 for solution–solution interfaces. The topography of a number of different starch granules, revealed by Freundlich exponents, was compared with structural data obtained by differential scanning calorimetry and Fourier transform infrared spectroscopy with attenuated total internal reflectance (FTIR-ATR).

Results

Enzyme binding rate and FTIR-ATR peak ratio were directly proportional to n and ΔgelH was inversely related to n. Amylase binds fastest to solubilised starch and to granules possessing smooth surfaces at the solid–liquid interface and slowest to granules possessing ordered crystalline surfaces.

Conclusions

Freundlich exponents provide information about surface blocklet structures of starch that supplements knowledge obtained from physical methods.

General Significance

Nanoscale structures at the surface of starch granules influence hydrolysis by α-amylase. This can be important in understanding how dietary starch is digested with relevance to diabetes, cardiovascular health and cancer.  相似文献   
89.
张倩  康斌 《动物学研究》2013,34(4):429-436
为探讨团头鲂幼鱼(Megalobrama amblycephala)游泳行为对水流的响应规律,该文通过特制鱼类游泳行为测定装置,测定了团头鲂幼鱼在25℃,0、0.1、0.2、0.3、0.4m/s流速条件下的游速、游距、转角、至中心点的距离及游泳轨迹。结果表明:随着流速的增大,个体游速、游距及转角值均相应增大。0、0.1及0.2m/s流速组间的游速、游距及转角差异均不显著(P>0.05),但显著小于0.3和0.4m/s组别,且0.3和0.4m/s流速组之间差异均不显著(P>0.05);整个时间段内,个体至中心点的距离随流速增大并未呈现明显规律性,各流速间差异不显著(P>0.05),游速与游距呈显著线性正相关,而与转角呈显著线性负相关,与至中心点的距离则无相关性;游泳轨迹随水流增大趋向复杂化。  相似文献   
90.
Yung-Pin Tsai 《Biofouling》2013,29(5-6):267-277
Abstract

The impact of flow velocity (FV) on the growth dynamics of biofilms and bulk water heterotrophic plate count (HPC) bacteria in drinking water distribution systems was quantified and modeled by combining a logistic growth model with mass balance equations. The dynamic variations in the specific growth and release rates of biofilm bacteria were also quantified. The experimental results showed that the maximum biofilm biomass did not change when flow velocity was increased from 20 to 40 cm s?1, but was significantly affected when flow velocity was further increased to 60 cm s?1. Although the concentration of biofilm bacteria was substantially reduced by the higher shear stress, the concentration of bacteria in the bulk fluid was slightly increased. From this it is estimated that the specific growth rate and specific release rate of biofilm bacteria had doubled. The specific release (detachment) rate was dependent on the specific growth rate of the biofilm bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号